
D
R
A

FT

INL REPORT
INL/EXT-16-39214
Unlimited Release
Printed August 2016

BIGHORN
Computational Fluid Dynamics Theory,
Methodology, and Code Verification &
Validation Benchmark Problems

Yidong Xia
David Andrs
Richard C. Martineau

Revised September 12, 2016

Prepared by
Idaho National Laboratory
Idaho Falls, Idaho 83415

The Idaho National Laboratory is a multiprogram laboratory operated by
Battelle Energy Alliance for the United States Department of Energy
under DOE Idaho Operations Office. Contract DE-AC07-05ID14517.

Approved for public release; further dissemination unlimited.

D
R
A

FT

Issued by the Idaho National Laboratory, operated for the United States Department of Energy
by Battelle Energy Alliance.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

D
EP

ARTMENT OF ENERG
Y

• •U
N

IT
ED

STATES OF AM

ER
IC

A

2

D
R
A

FT

INL/EXT-16-39214

Unlimited Release

Printed August 2016

BIGHORN
Computational Fluid Dynamics Theory,

Methodology, and Code Verification & Validation
Benchmark Problems

Yidong Xia

Department of Materials Science and Engineering

Energy, Environment Science & Technology Directorate

Idaho National Laboratory

P.O. Box 3560

Idaho Falls, ID 83415-2025

David Andrs

Department of Modeling and Simulation

Nuclear Science & Technology Directorate

Idaho National Laboratory

P.O. Box 3825

Idaho Falls, ID 83415-2025

Richard C. Martineau

Department of Modeling and Simulation

Nuclear Science & Technology Directorate

Idaho National Laboratory

P.O. Box 3840

Idaho Falls, ID 83415-2025

Revised September 12, 2016

3

D
R
A

FT

Abstract

This document presents the theoretical background for a hybrid finite-element / finite-volume

fluid flow solver, namely BIGHORN, based on the Multiphysics Object Oriented Simulation

Environment (MOOSE) computational framework developed at the Idaho National Laboratory

(INL). An overview of the numerical methods used in BIGHORN are discussed and followed

by a presentation of the formulation details. The document begins with the governing equations

for the compressible fluid flow, with an outline of the requisite constitutive relations. A second-

order finite volume method used for solving the compressible fluid flow problems is presented

next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation for time

integration is also presented. The multi-fluid formulation is being developed. Although multi-

fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems. Due

to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and can

accommodate both multi-species and multi-phase formulations. This document also presents a

suite of verification & validation benchmark test problems for BIGHORN. The intent for this

suite of problems is to provide baseline comparison data that demonstrates the performance of

the BIGHORN solution methods on problems that vary in complexity from laminar to turbulent

flows. Wherever possible, some form of solution verification has been attempted to identify

sensitivities in the solution methods, and suggest best practices when using BIGHORN.

4

D
R
A

FT

Acknowledgment

The work described in this document has been authored by Battelle Energy Alliance, LLC under

the Idaho National Laboratory’s Laboratory Directed Research and Development (LDRD) project

entitled “Development of a Multiphysics Algorithm for Analyzing the Integrity of Nuclear Reactor

Containment Vessels Subjected to Extreme Thermal and Overpressure Loading Conditions” (Track

No. 14-104) with the U.S. Department of Energy. Dr. Richard C. Martineau served as the Principal

Investigator of this project, whose support is greatly appreciated by the lead author.

5

D
R
A

FT

Contents
1 Introduction . 12

1.1 Code Overview . 12

1.2 Architecture and Design . 12

2 Governing Equations of Fluid Dynamics . 15

2.1 Navier–Stokes Equations . 15

2.2 Euler Equations . 17

2.3 Nondimensionalization . 17

3 Finite Volume Spatial Discretization . 20

3.1 Overview . 20

3.2 Mesh and Finite Volumes . 22

3.3 FVM for the Compressible Navier–Stokes Equations . 23

3.4 First-Order FVM . 25

4 High-Resolution Methods . 26

4.1 Reconstruction . 26

4.1.1 Least-Squares Gradient Reconstruction . 27

4.1.2 Green–Gauss Gradient Reconstruction . 28

4.1.3 Min-Max Gradient Limiter . 29

4.1.4 WENO Gradient Limiter . 30

4.2 TVD Slope Limiters . 31

4.2.1 Minmod Slope Limiter . 31

4.2.2 Superbee Slope Limiter . 32

4.2.3 MC Slope Limiter . 32

5 Temporal Discretization and Integration Methods. 33

5.1 Explicit Time Integration . 33

5.1.1 One-Step Explicit Euler Scheme . 33

5.1.2 Two-Step Explicit Mid-Point Runge-Kutta Scheme 33

5.1.3 Two-Step Explicit TVD Runge-Kutta Scheme . 33

5.1.4 Three-Step Explicit TVD Runge-Kutta Scheme . 34

5.2 Implicit Time Integration . 35

6 Numerical Flux Schemes . 36

6.1 Overview . 36

6.2 HLLC Schemes . 37

7 Boundary Conditions . 42

7.1 Slip Wall Boundary Condition . 42

7.2 Riemann Invariant Boundary Condition . 43

8 An Improved PCICE-FEM Algorithm for All-Speed Flows . 47

8.1 Overview . 47

8.2 Governing Equations . 47

8.3 The Improved PCICE Algorithm . 48

8.3.1 Explicit Predictor . 48

8.3.2 Semi-Implicit Corrector . 48

9 Code Verification and Validation Test Cases . 53

9.1 Overview . 53

6

D
R
A

FT

9.2 Sod Shock Tube . 54

9.2.1 Problem Description . 54

9.2.2 Problem Setup . 54

9.2.3 Input Files . 54

9.2.4 Mesh Files . 55

9.3 Lax Shock Tube . 57

9.3.1 Problem Description . 57

9.3.2 Problem Setup . 57

9.3.3 Input Files . 57

9.3.4 Mesh Files . 58

9.4 Woodward–Collela Blast Wave . 60

9.4.1 Problem Description . 60

9.4.2 Problem Setup . 60

9.4.3 Input Files . 60

9.4.4 Mesh Files . 61

9.5 Sedov Blast Wave in 1D . 63

9.5.1 Problem Description . 63

9.5.2 Problem Setup . 63

9.5.3 Input Files . 63

9.5.4 Mesh Files . 64

9.6 Double Rarefaction Wave . 66

9.6.1 Problem Description . 66

9.6.2 Problem Setup . 66

9.6.3 Input Files . 66

9.6.4 Mesh Files . 67

9.7 Inviscid Flow through a 2D Channel . 69

9.7.1 Problem Description . 69

9.7.2 Problem Setup . 69

9.7.3 Input Files . 70

9.7.4 Mesh Files . 70

9.8 Inviscid Flow past a 2D Circular Cylinder . 74

9.8.1 Problem Description . 74

9.8.2 Problem Setup . 74

9.8.3 Input Files . 75

9.8.4 Mesh Files . 76

9.9 A 2D Mach-3 Wind Tunnel with a Step . 80

9.9.1 Problem Description . 80

9.9.2 Problem Setup . 80

9.9.3 Input Files . 81

9.9.4 Mesh Files . 81

9.10 Inviscid Bow Shock Upstream of a Blunt Body in Supersonic Flow 85

9.10.1 Problem Description . 85

9.10.2 Problem Setup . 85

9.10.3 Input Files . 87

9.10.4 Mesh Files . 87

7

D
R
A

FT

9.11 Mach-3 Supersonic Flow Over a Wedge . 95

9.11.1 Problem Description . 95

9.11.2 Problem Setup . 95

9.11.3 Input Files . 96

9.11.4 Mesh Files . 97

References . 107

8

D
R
A

FT

Figures
1 The object-oriented architecture used to develop the BIGHORN code. 13

2 Examples of finite volume cells in 2D and 3D. 22

3 Schematics of cell-centered and vertex-centered finite volume methods. 23

4 Examples of finite volume cells and their face neighboring cells in 2D. 24

5 Example of a common face between cells Ci and Cj in 2D. 25

6 Schematics of reconstructed solution on a common face in 2D. 26

7 Example of the stencil required for reconstruction of an interior cell in 2D. 28

8 Verification of temporal accuracy for the two-step TVD Runge-Kutta scheme. . . . 34

9 Density profile at t = 0.2 for the Sod shock tube. 55

10 Mach number profile at t = 0.2 for the Sod shock tube. 56

11 Pressure profile at t = 0.2 for the Sod shock tube. 56

12 Density profile at t = 0.15 for the Lax shock tube. 58

13 Mach number profile at t = 0.15 for the Lax shock tube. 59

14 Pressure profile at t = 0.15 for the Lax shock tube. 59

15 Density profile at t = 0.038 for the Woodward–Collela blast wave. 61

16 Mach number profile at t = 0.038 for the Woodward–Collela blast wave. 62

17 Pressure profile at t = 0.038 for the Woodward–Collela blast wave. 62

18 Density profile at t = 0.005 for the Sedov blast wave. 64

19 Velocity profile at t = 0.005 for the Sedov blast wave. 65

20 Pressure profile at t = 0.005 for the Sedov blast wave. 65

21 Density profile at t = 0.6 for the double rarefaction wave. 67

22 Velocity profile at t = 0.6 for the double rarefaction wave. 68

23 Pressure profile at t = 0.6 for the double rarefaction wave. 68

24 Computational meshes for inviscid flow through a channel. 71

25 Steady-state Mach number contours for inviscid flow through a channel. 72

26 L2 entropy error vs. length scale h for inviscid flow through a channel. 73

27 L2 entropy error vs. time-step for inviscid flow through a channel. 73

28 Computational meshes for inviscid flow past a cylinder. 77

29 Steady-state Mach number contours for inviscid flow past a cylinder. 78

30 L2 entropy error vs. length scale h for inviscid flow past a cylinder. 79

31 L2 entropy error vs. time-step for inviscid flow past a cylinder. 79

32 The unstructured quadrilateral mesh for a Mach-3 wind tunnel with a step. 81

33 Density contours at about t = 0.5 for a Mach-3 wind tunnel with a step. 82

34 Density contours at about t = 1.0 for a Mach-3 wind tunnel with a step. 82

35 Density contours at about t = 1.5 for a Mach-3 wind tunnel with a step. 82

36 Density contours at about t = 2.0 for a Mach-3 wind tunnel with a step. 83

37 Density contours at about t = 2.5 for a Mach-3 wind tunnel with a step. 83

38 Density contours at about t = 3.0 for a Mach-3 wind tunnel with a step. 83

39 Density contours at about t = 4.0 for a Mach-3 wind tunnel with a step. 84

40 Pressure contours at about t = 4.0 for a Mach-3 wind tunnel with a step. 84

41 Mach number contours at about t = 4.0 for a Mach-3 wind tunnel with a step. . . . 84

42 Computational domain for inviscid bow shock upstream of a blunt body in Mach-4

supersonic flow. 86

9

D
R
A

FT

43 A set of three successively refined unstructured quadrilateral meshes for inviscid

bow shock upstream of a blunt body in Mach-4 supersonic flow. 88

44 Steady-state density contours for inviscid bow shock upstream of a blunt body in

Mach-4 supersonic flow. 89

45 Steady-state pressure contours for inviscid bow shock upstream of a blunt body in

Mach-4 supersonic flow. 90

46 Steady-state Mach number contours for inviscid bow shock upstream of a blunt

body in Mach-4 supersonic flow. 91

47 Steady-state density profile along the symmetry line of y = 0 for inviscid bow

shock upstream of a blunt body in Mach-4 supersonic flow. 92

48 Steady-state pressure profile along the symmetry line of y = 0 for inviscid bow

shock upstream of a blunt body in Mach-4 supersonic flow. 93

49 Steady-state Mach number profile along the symmetry line of y = 0 for inviscid

bow shock upstream of a blunt body in Mach-4 supersonic flow. 94

50 Computational domain for inviscid Mach-3 supersonic flow over a wedge (SideSet
= 1 is solid wall, SideSet = 2 is inflow boundary, and SideSet = 3 is outflow

boundary). 95

51 An unstructured triangular mesh (nelem = 11024, npoin = 5656) for inviscid

Mach-3 supersonic flow over a wedge. 97

52 Steady-state density contours for inviscid Mach-3 supersonic flow over a wedge:

(a) DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope lim-

iting, (c) rDG(P0P1) with L-S slope reconstruction and WENO slope limiting. . . . 98

53 Steady-state pressure contours for inviscid Mach-3 supersonic flow over a wedge:

(a) DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope lim-

iting, (c) rDG(P0P1) with L-S slope reconstruction and WENO slope limiting. . . . 99

54 Steady-state Mach number contours for inviscid Mach-3 supersonic flow over a

wedge: (a) DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax

slope limiting, (c) rDG(P0P1) with L-S slope reconstruction and WENO slope

limiting. 100

55 Steady-state entropy contours for inviscid Mach-3 supersonic flow over a wedge:

(a) DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope lim-

iting, (c) rDG(P0P1) with L-S slope reconstruction and WENO slope limiting. . . . 101

56 Plot of computed density versus x-coordinate along the line y = 3.5. 102

57 Plot of computed pressure versus x-coordinate along the line y = 3.5. 103

58 Plot of computed Mach number versus x-coordinate along the line y = 3.5. 104

59 Plot of computed entropy versus x-coordinate along the line y = 3.5. 105

60 Comparison of computed density residual norm versus time-step between rDG

(P0P1) with L-S + minmax and rDG (P0P1) with L-S + WENO. 106

10

D
R
A

FT

Tables
1 Reference variables for nondimensionalization of the governing equations 17

2 Raw data for inviscid flow through a channel. 70

3 Raw data for inviscid flow past a circular cylinder. 75

11

D
R
A

FT

1 Introduction

1.1 Code Overview

The work described in this report documents the development of a Computational Fluid Dynamics

(CFD) simulation code, namely BIGHORN, for modeling and predicting the multi-component,

multi-phase fluid dynamics in multi-dimensions. The code is developed on a parallel Multiphysics

Object Oriented Simulation Environment (MOOSE) computational framework developed at Idaho

National Laboratory (INL) for providing finite element / discontinuous Galerkin solutions of cou-

pled system of nonlinear partial differential equations. MOOSE was originally developed for mod-

eling multiphysics problems often encountered in nuclear reactor and fuel performance analysis.

The main purpose of this report is to present the theoretical background for the BIGHORN hybrid

finite-element / finite-volume fluid flow solver. In the sections that follow, the governing equations

are presented with an outline of the requisite constitutive relations. An overview of the numerical

methods used in BIGHORN are discussed and followed by a presentation of the formulation de-

tails. A second-order finite volume method used for solving the compressible fluid flow problems

is presented next. A Pressure-Corrected Implicit Continuous-fluid Eulerian (PCICE) formulation

for time integration is also presented. The multi-fluid formulation is being developed. Although

multi-fluid is not fully-developed, BIGHORN has been designed to handle multi-fluid problems.

Due to the flexibility in the underlying MOOSE framework, BIGHORN is quite extensible, and

can accommodate both multi-species and multi-phase formulations. This document also presents

a suite of verification & validation benchmark test problems for BIGHORN. The intent for this

suite of problems is to provide baseline comparison data that demonstrates the performance of the

BIGHORN solution methods on problems that vary in complexity from laminar to turbulent flows.

Wherever possible, some form of solution verification has been attempted to identify sensitivities

in the solution methods, and suggest best practices when using BIGHORN.

1.2 Architecture and Design

BIGHORN has been designed for the simulation of single-/multi-species, single-/multi-phase fluid

flows. The architecture of BIGHORN has a plug-and-play modular design structure by represent-

ing each piece of the residual term in a weak form of the governing PDEs as a “Kernel”. Kernels

may be coupled together to achieve different application goals. All kernels are required to supply

a residual, which usually involves summing products of finite element shape functions. The basic

architecture of the code allows convenient coupling of different processes and incorporation of

new physics.

Fig. 1 shows the basic architecture of the BIGHORN code, with the Kernels at the uppermost

level, directly underlain by the numerical framework and solver libraries used to couple the Kernels

and perform the simulations. Currently primary Kernels (primary variables) have been written to

describe the following physics of fluid:

12

D
R
A

FTFigure 1. The object-oriented architecture used to develop the BIGHORN code.

• Single-phase flow of ideal gas, or liquid water, or steam;

• Presumptive two-phase flow of water and steam.

An auxiliary variable system has been built into BIGHORN to handle solving most all of the

derived quantities and variables that are dependent on the primary kernels mentioned above. The

number of auxiliary kernels needed for a given simulation depends on the choice of primary vari-

ables and whether they are formulated in terms of single-phase or two-phase. In general, a simu-

lation run with the two-phase formulation requires the most auxiliary kernels and has the highest

computational burden. The auxiliary kernels consist of

• Equation-of-State (EOS) calculations;

– Ideal gas (for dry air)

– Stiffened gas (for single-phase water or steam)

– IAPWS-1997 formulation for two-phase water and steam

• Pressure

• Temperature

• Velocity components

• Speed of sound

• Mach number

• Enthalpy

13

D
R
A

FT

• Entropy (if possible)

In addition to the primary and auxiliary physics kernels, other kernels are required for the mesh,

material properties (and some additional supporting calculations), boundary conditions, code exe-

cution / solver parameters, and data output.

14

D
R
A

FT

2 Governing Equations of Fluid Dynamics

2.1 Navier–Stokes Equations

The Navier-Stokes equations governing unsteady compressible viscous flows can be expressed as

∂U
∂t

+∇ ·FFF(U) = ∇ ·∇GGG(U)+S(U) (1)

where FFF is the advective (inviscid) flux tensor, GGG is the diffusive (viscous) flux tensor, SSS is the

vector of source term, and ∇ is the divergence operator.

The conservative variable vector U is defined by

U =

⎡
⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
ρE

⎤
⎥⎥⎥⎥⎦ (2)

where ρ, p, and E denote the density, pressure, and specific total energy of the fluid, respectively,

and u, v, and w are the velocity components of the flow in the coordinate direction x, y and z. The

pressure can be computed from the equation of state

p = (γ−1)ρ
(

E − 1

2
(u2 + v2 +w2)

)
(3)

which is valid for perfect gas, and the ratio of the specific heats γ is assumed to be constant and

equal to 1.4. Furthermore, the specific total enthalpy H is defined as

H = E +
p
ρ

(4)

In Eq. (1), the advective (inviscid) flux tensor FFF = (Fx,Fy,Fz) is defined by

Fx =

⎡
⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv
ρuw

u(ρE + p)

⎤
⎥⎥⎥⎥⎦ Fy =

⎡
⎢⎢⎢⎢⎣

ρv
ρvu

ρv2 + p
ρvw

v(ρE + p)

⎤
⎥⎥⎥⎥⎦ Fz =

⎡
⎢⎢⎢⎢⎣

ρw
ρwu
ρwv

ρw2 + p
w(ρE + p)

⎤
⎥⎥⎥⎥⎦ (5)

15

D
R
A

FT

and the viscous flux tensor GGG is defined by

Gx =

⎡
⎢⎢⎢⎢⎣

0

τxx
τxy
τxz

uτxx + vτxy +wτxz +qx

⎤
⎥⎥⎥⎥⎦

Gy =

⎡
⎢⎢⎢⎢⎣

0

τyx
τyy
τyz

uτyx + vτyy +wτyz +qy

⎤
⎥⎥⎥⎥⎦

Gz =

⎡
⎢⎢⎢⎢⎣

0

τzx
τzy
τzz

uτzx + vτzy +wτzz +qz

⎤
⎥⎥⎥⎥⎦

(6)

where the viscous stress tensor τττ is expressed as

τττ =

⎡
⎣τxx τxy τxz

τyx τyy τyz
τzx τzy τzz

⎤
⎦ (7)

The Newtonian fluid with the Stokes hypothesis is valid under the current framework, since only

air is considered. Thus τττ is symmetric and the tensor is a linear function of the velocity gradients

τi j = μ
(

∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
μ

∂uk

∂xk
δi j (8)

where δi j is the Kronecker delta function, and μ represents the molecular viscosity coefficient (of-

ten referred to as dynamic viscosity coefficient as well), which can be determined through Suther-

land’s law

μ
μ0

=

(
T
T0

) 3
2 T0 +S

T +S
(9)

where μ0 denotes the viscosity coefficient at the reference temperature T0, and S is a constant which

is assumed the value S = 110K. The temperature of the fluid T is determined by

T =
P

ρR
(10)

where R denotes the universal gas constant for perfect gas.

The heat flux vector q j, which is formulated according to Fourier’s law, is given by

q j =−λ
∂T
∂x j

(11)

16

D
R
A

FT

where λ is the thermal conductivity coefficient and expressed as

λ =
μcp

Pr
(12)

where cp is the specific heat capacity at constant pressure and Pr is the nondimensional laminar

Prandtl number, which is taken as 0.7 for air.

2.2 Euler Equations

If the effect of viscosity and thermal conduction as well as the source term are neglected in Eq. (1),

then we arrived at the Euler equations expressed as below, which govern unsteady compressible

inviscid flows
∂U
∂t

+∇ ·FFF(U) = 0 (13)

2.3 Nondimensionalization

The governing equations are often put into the nondimensional form. The advantage in doing so

is that the characteristic parameters such as Mach number, Reynolds number, and Prandtl number

can be varied independently. Also, by nondimensionalizing the governing equations, the flow

variables are “normalized”, so that their values fall between certain prescribed limits such as 0 and

1. Many different nondimensionalizing procedures are possible. In this work, we use the following

four reference variables: length, density, velocity and temperature. The choice of each reference

variable is summarized in Table 1.

Table 1. Reference variables for nondimensionalization of the governing equations

Variable Reference

Length Lref Problem dependent (cylinder diameter, plate length, etc) d, l
Density ρref Freestream density ρ∞
Velocity Vref, Freestream speed of sound a∞
Temperature Tref Freestream temperature T∞

17

D
R
A

FT

The nondimensional variables are denoted by an overbar

L̄ =
L

Lref
,

ρ̄ =
ρ

ρ∞
,

ū =
u

a∞
,

v̄ =
v

a∞
,

w̄ =
w
a∞

,

T̄ =
T
T∞

,

and accordingly, the derived normalized variables are expressed in the following manner

p̄ =
p

ρ∞a2
∞
,

h̄ =
h

a2
∞
,

c̄p =
cp

a2
∞/T∞

,

μ̄ =
μ

ρ∞a∞
.

It is also trivial to derive the nondimensional equation of state as

p̄ =
1

γ
ρ̄T̄

The freestream Mach number M∞ is defined as

M∞ =
V∞
a∞

The freestream Reynolds number Re∞ is determined as

Re∞ =
ρ∞a∞Lref

μ∞

The Prandtl number is written as

Pr =
μ∞cp

λ
In the normalized governing equations, the nondimensional viscous stress tensor is

τ̄i j = μ̄
(

∂ūi

∂x j
+

∂ū j

∂xi
− 2

3

∂ūk

∂xk
δi j

)

18

D
R
A

FT

and the nondimensional heat flux q̄ j vector is

q̄ j =−μ̄c̄p
1

Pr
∂T̄
∂x j

The nondimensional molecular viscosity coefficient μ̄ is computed with the dimensionless Suther-

land’s law

μ̄ =
M∞
Re∞

T̄
3
2

1+S/T∞
T̄ +S/T∞

For the installation of a specific flow problem, the nondimensional input parameters include two

fixed-value quantities ρ̄∞ = 1 and a∞ = 1, and five user-adjustable quantities: M∞, angle of attack

α, yaw angle β, Re∞ and Pr. With these inputs, a uniform flow field is prescribed for a steady-state

problem at the initialization stage and the corresponding conservative variables are

ρ̄∞ = 1,

ρ̄u∞ = M∞ cosαcosβ,
ρ̄v∞ = M∞ cosαsinβ,
ρ̄w∞ = M∞ sinα,

ρ̄E∞ =
1

γ(γ−1)
+

1

2
M2

∞.

The other derived dimensionless variables are

p̄∞ =
1

γ
,

μ̄∞ =
M∞
Re∞

,

c̄p =
1

γ−1
,

λ̄ = μ̄
1

Pr
1

γ−1
.

From now on, all variables and equations that appear in the text are assumed to be in the nondi-

mensional system and therefore the overbar sign will be dropped for simplicity.

19

D
R
A

FT

3 Finite Volume Spatial Discretization

3.1 Overview

CFD has become an indispensable tool for a variety of applications in science and engineering.

General speaking, numerical methods used in CFD can be classified by the mesh they use to

discretize a computational domain as structured grid methods, unstructured grid methods, and

Cartesian grid methods. The structured grid methods alone are not practical for engineering appli-

cations, as they have a disadvantage for gridding complex geometries. More often, they are used in

the context of Chimera or overlapping approaches [1,2] to simplify the grid generation process for

a complex configuration. The difficulty of generating a structured grid for complex geometries and

the desire in the engineering community to simulate numerically flows past increasingly complex

geometries have fueled interest in the development of unstructured grid methods [3–5]. Unstruc-

tured grids provide great flexibility in dealing with the complex geometries encountered in practice

and offer a natural framework for solution-adaptive mesh refinement. However, the computational

costs and memory requirements for unstructured triangular/tetrahedral grids are generally higher

than for structured grids. Although the solution accuracy may not be strongly affected by ele-

ment type even in the boundary layers, computational efficiency can benefit substantially through

the use of prismatic elements in the boundary layers and Cartesian cells in the inviscid regions.

This is due to a simple fact that approximately, five to six times more tetrahedra than hexahedra

are required to fill a given region with a fixed number of nodes. Although the boundary layers

regions occupy only a small portion of the computational domain, it is not uncommon for more

than half of the mesh resolution to be packed into this small region, and thus the quadrilateral

elements in 2D and prismatic elements in 3D can lead to a significant saving in both memory

requirements and computational costs. From the computational efficiency point of view, unstruc-

tured triangular / tetrahedral elements should be kept minimal. The advantages of the Cartesian

grid approaches [6–10] include ease of grid generation, lower computational storage requirements,

and significantly less operational count per cell. However, the main challenge in using Cartesian

methods is how to deal with arbitrary boundaries, as the grids are not body-aligned. The cells of a

Cartesian mesh near the body can extend through surfaces of boundaries. Accurate means of rep-

resenting boundary conditions in cells that intersect surfaces are essential for successful Cartesian

methods. Since each grid type has its own advantages and disadvantages, the best grid approach is

clearly a hybrid one that combines the advantages and strengths of all these three grid types.

The finite volume (FV) methods are probably the most successful class of spatial discretization

techniques in computational fluid dynamics, due to their relative simplicity and great flexibility.

In recent years, significant progress has been made in developing FV methods to solve the com-

pressible Navier-Stokes equations on hybrid grids [11–18]. Nowadays, the FV methods are widely

and routinely used for solving flow problems of scientific and industrial interest [19]. There exist

two major classes of the finite volume methods: cell-centered and vertex-centered finite volume

methods. Although the debate that which one has an edge over the other will probably never be set-

tled, a cell-centered finite volume method is preferred in the context of arbitrary grids, which may

contain hanging nodes. The existence of several cell types in a hybrid grid poses a great challenge

to numerical methods. Although it is unavoidable to treat different cell types differently during the

20

D
R
A

FT

pre- and post-processing stages, it is undesirable that an algorithm depends on a mesh topology

during the flow solution stage. The required conditional statements not only lead to an untidy code

but also adversely affect speed of programs. Therefore, it is desirable to design an algorithm that

treats different cell types in the same way. Such an algorithm is termed grid-transparent in the

literature, which does not require any information on the local cell topology. A grid-transparent

scheme has a number of advantages: first of all it can significantly reduce the discretization stencils

compared to a non-grid-transparent scheme; secondly it can increase the speed of programs; and

last it can facilitate the implementation of implicit schemes and parallelization.

A first order cell-centered finite volume method is in general stable on arbitrary grids. How-

ever, the second-order finite volume methods based on a piecewise linear reconstruction suffer

from the so-called linear instability on unstructured tetrahedral grids, when the reconstruction

stencil only involves adjacent face-neighboring cells [20]. One way to overcome this problem

is to use extended stencils, which unfortunately will sacrifice the compactness of the underlying

data structure. Furthermore, these linear reconstruction based finite volume methods suffer from

non-physical oscillations in the vicinity of strong discontinuities for convection-dominant flows.

Alternatively, total variation diminishing (TVD) or essentially non-oscillatory (ENO) / weighted

ENO (WENO) reconstruction methods can be used to obtain a linear polynomial solution. The

TVD and ENO/WENO high order methods are designed to suppress the spurious oscillations in

the vicinity of discontinuities, and enhance the order of accuracy of the underlying first-order fi-

nite volume methods, thus achieving both linear and non-linear stability. Slope limiters are widely

used in the finite volume methods to modify the piecewise linear reconstruction and thus to satisfy

TVD condition. Unfortunately, the use of limiters will reduce the order of accuracy to first order

in the presence of local extrema. Indeed, the limiters to enhance TVD/MUSCL conditions are less

robust than the strategies of essential ENO/WENO reconstruction. The ENO schemes were ini-

tially introduced by Harten et al., [21] in which oscillations up to the order of the truncation error

are allowed to overcome the drawbacks and limitations of limiter-based schemes. ENO schemes

avoid interpolation across high-gradient regions through biasing of the reconstruction. This bias-

ing is achieved by reconstructing the solution on several stencils at each location, and selecting the

reconstruction, which is in some sense the smoothest. This allows ENO schemes to retain higher-

order accuracy near high-gradient regions. However, the selection process can lead to convergence

problems and loss of accuracy in regions with smooth solution variations. To counter these prob-

lems, the so-called weighted ENO scheme introduced by Liu et al. [22] is designed to present better

convergence rate for steady state problems, better smoothing for the flux vectors, and better accu-

racy using the same stencils than the ENO scheme. The WENO scheme uses a suitably weighted

combination of all reconstructions rather than just the one that is judged to be the smoothest. The

weighting is designed to favor the smooth reconstruction in the sense that its weight is small, if the

oscillation of a reconstructed polynomial is high and its weight is order of one, if a reconstructed

polynomial has low oscillation. The development of ENO/WENO-based finite volume methods

has been and still remains one of the active research topics in CFD as witnessed by abundance of

literatures [23–28].

21

D
R
A

FT

3.2 Mesh and Finite Volumes

Let us define a domain, Ω, in finite space, and divide Ω into a set of disjoint finite volume, and

apply the conservation laws on each finite volume. The division of Ω gives rise to the mesh or

grid, as follows,

Ωi, i = 1,2, ...,NΩ

Ω =
NΩ

∑
i=1

Ωi
.

Ωi can be any convex polygonal cell in 2D/3D, e.g., triangle and quadrilateral in 2D, and tetra-

hedron, pyramid, prism, and hexahedron in 3D (see Fig. 2). Notice that the mesh can consist of

Figure 2. Examples of finite volume cells in 2D and 3D.

different types of those cells, for example, triangular and quadrilateral cells in a 2D mesh. Such a

mesh is called hybrid mesh. Usually the mesh is taken to be conforming in the sense that there

22

D
R
A

FT

are no hanging nodes. But it is possible to use meshes with hanging nodes also, which can be

advantageous when doing mesh adaptation.

Once a mesh has been formed, we have to create finite volumes on which the conservation law

will be applied. This can be done in two ways, depending on where the solution is stored. If the

solution is stored at the center of Ωi, then Ωi itself is the finite volume, i.e., Ci = Ωi. This gives rise

to the cell-centered finite volume method. Alternatively, the solution can be stored at the vertices

of the mesh. Then around each vertex, i, we have to construct a cell, Ci. This gives rise to the

vertex-centered finite volume method. In either case we can obtain a collection of disjoint finite

volumes Ci, i = 1,2, ...,NC such that Ω = ∑NC
i=1Ci. However, this work adopts the cell-centered

finite volume method, since it is a subset of the discontinuous Galerkin methods. The solution of

cell-centered finite volume method in each cell can be regarded as a piecewise constant polynomial

in terms of discontinuous Galerkin methods.

Figure 3. Schematics of cell-centered and vertex-centered finite volume methods.

Some notations of geometric information are defined for convenience. An internal face, Si j =
∂Ci ∩ ∂Cj, is the common face between Ci and Cj. A boundary face, Sib = ∂Ci ∩ ∂Ω, is a face of

Ci on the boundary of Ω. For each cell Ci, Ni represents a set of neighboring cells, Cj, having a

common face, Si j, with Ci. Fig. 4 shows two example cells and their face neighboring cells in 2D.

3.3 FVM for the Compressible Navier–Stokes Equations

Recall the compressible Navier–Stokes equations in differential form:

∂U
∂t

+∇ ·FFF = ∇ ·∇GGG+S, (14)

which can be integrated over each cell, Ci, as follows,

∫
Ci

∂U
∂t

dV +
∫

Ci

∇ ·FFF dV −
∫

Ci

∇ ·∇GGG dV −
∫

Ci

S dV = 0. (15)

23

D
R
A

FT
Figure 4. Examples of finite volume cells and their face neighboring cells in 2D.

Define cell-average value

Ui(t) =
1

|Ci|
∫

Ci

U(x, t) dV (16)

Using the divergence theorem, the following equations can then be derived from Eq. (15):

|Ci|dUi

dt
+

∫
∂Ci

FFF ·n dS−
∫

∂Ci

∇GGG ·n dS−
∫

Ci

S dV = 0. (17)

|Ci|dUi

dt
+ ∑

j∈Ni

∫
Si j

FFF ·n dS+ ∑
Sib∈∂Ω

∫
Sib

FFF ·n dS

− ∑
j∈Ni

∫
Si j

∇GGG ·n dS− ∑
Sib∈∂Ω

∫
Sib

∇GGG ·n dS−
∫

Ci

S dV = 0,
(18)

where n is the unit normal vector pointing from Ci to Cj, as shown in Fig. 5.

The flux integral can be approximately calculated by numerical quadrature. For the first- and

second-order accurate schemes, it is enough to use mid-point rule of integration as follows,

∫
Si j

FFF ·n dS−
∫

Si j

∇GGG ·n dS ≈ (FFF ·n)i j|Si j|− (∇GGG ·n)i j|Si j|. (19)

The approach to compute the flux is to be discussed. We have two states, Ui j and U ji coming from

cells Ci and Cj, respectively. A numerical flux function of Godunov-type or flux vector splitting

can be applied for the inviscid part, etc

(FFF ·n)i j ≈ H inv(Ui j,U ji,ni j). (20)

On boundary faces Sib, the flux should be determined using appropriate boundary conditions,

(FFF ·n)ib ≈ H inv
b (Uib,Ub,nib). (21)

The viscous fluxes,

(∇GGG ·n)i j ≈ H vis(Ui j,U ji,ni j), (22)

24

D
R
A

FTFigure 5. Example of a common face between cells Ci and Cj in 2D.

and

(∇GGG ·n)ib ≈ H vis
b (Uib,Ub,nib) (23)

can be computed using central difference type approximations, which will be discussed later.

Finally the semi-discrete form can be arrived as follows,

|Ci|dUi

dt
+ ∑

j∈Ni

H inv(Ui j,U ji,ni j)|Si j|+ ∑
Sib∈∂Ω

H inv
b (Uib,Ub,nib)|Sib|

− ∑
j∈Ni

H vis(Ui j,U ji,ni j)− ∑
Sib∈∂Ω

H vis
b (Uib,Ub,nib)−

∫
Ci

S dV = 0.
(24)

Eq. (24) is a system of ODE, which can be integrated in time using various schemes like explicit

Runge–Kutta or implicit schemes.

3.4 First-Order FVM

In the case of first-order finite volume methods, the solution in each cell is assumed to be a constant

in space. Then on any interior face Si j, the two states are simply

Ui j = Ui, U ji = U j. (25)

The inviscid flux is then approximated as

H inv(Ui j,U ji,ni j) = H inv(Ui,U j,ni j), (26)

which leads to a first-order accurate scheme. If the numerical flux H inv is well designed, then these

schemes can be very stable, robust, and have desired properties like monotonicity and entropy

condition. However, the first-order finite volume schemes usually introduce too much error and

lead to poor resolution of shocks, contact waves, and vorticity.

25

D
R
A

FT

4 High-Resolution Methods

4.1 Reconstruction

To achieve spatial accuracy higher than the first order, the solution in each cell needs to be recon-

structed. The simplest approach is to perform piecewise linear reconstruction. The reconstruction

can be performed on

• Conserved variables

• Primitive variables, e.g., (ρ,u,v,w, p) or (T,u,v,w, p)

• Characteristic variables

Notice that though the conserved variables satisfy the conservation of reconstructed solution easily,

they are not as robust as the primitive variables as to ensure the positivity of density and pressure.

Moreover, characteristic variables lead to more accurate schemes at a slightly more computational

cost. Considering these factors, this work adopts the primitive variables for reconstruction.

Figure 6. Schematics of reconstructed solution on a common face in 2D.

From now on, let us denote Ūi as the underlying cell-average solution in each cell, and Ui the

linear polynomial solution to be reconstructed. Using the reconstruction process, two reconstructed

states Ui j and U ji at the common face Si j can be obtained to compute the inviscid flux

Hinv(Ui j,U ji,ni j).

By assuming the gradient of Ui at the center of Ci, the reconstructed solution for Ci is

U(r) = Ūi +(r− ri) ·∇Ui

26

D
R
A

FT

where r = (x,y,z), and ri = (xi,yi,zi).

As shown in Fig. 6, two states can be obtained at the center of face Si j (i.e., r = ri j), ,

Ui j = Ūi +(ri j − ri) ·∇Ui,

U ji = Ū j +(ri j − r j) ·∇U j.

Notice that in order to ensure monotone solutions, a limiter function has to be calculated in each

cell. The limited reconstructed values are

Ui j = Ūi +φi(ri j − ri) ·∇Ui,

U ji = Ū j +φ j(ri j − r j) ·∇U j.

Since U has several components, the limiter function is computed for each component. Popular

limiters include the min-max limiter of Barth–Jespersen [29], and Venkatakrishnan limiter which

will be introduced later.

4.1.1 Least-Squares Gradient Reconstruction

One of the most commonly used and simplest reconstruction schemes is the least-squares recon-

struction, where the computation of gradients is performed in the form of a minimization problem.

The complete details of this reconstruction procedure can be found in [30]. However, the proce-

dure is summarized here for completeness. Consider a cell Ci and assume that the solution varies

linearly in the union of the cell Ci, and its face-neighboring cell j. Then, the change in cell-centered

values of the solution can be computed by

∇ · (r j − ri) = U j −Ui (27)

where ri and r j are the position vector for the center of cells i and j, respectively. Similar equations

could be written for all adjacent cells that share a face with the cell Ci subject to an arbitrary

weighting factor wi. This yields the following non-square matrix, for example, in 3D,⎡
⎢⎣

w1(x1 − xi) w1(y1 − yi) w1(z1 − zi)
...

...
...

wn(xn − xi) wn(yn − yi) wn(zn − zi)

⎤
⎥⎦
⎡
⎣Ux

Uy
Uz

⎤
⎦=

⎡
⎢⎣

w1(U1 −Ui)
...

wn(Un −Ui)

⎤
⎥⎦ , (28)

and in 2D, ⎡
⎢⎣

w1(x1 − xi) w1(y1 − yi)
...

...

wn(xn − xi) wn(yn − yi)

⎤
⎥⎦[

Ux
Uy

]
=

⎡
⎢⎣

w1(U1 −Ui)
...

wn(Un −Ui)

⎤
⎥⎦ (29)

where n is the number of the face-neighboring cells for the cell Ci, numbered from 1 to n. In the

case of 1D mesh, the stencil involved to form the non-square matrix for an interior cell is its left-

and right-neighboring cells, [
w1(xi−1 − xi)
w2(xi+1 − xi)

][
Ux

]
=

[
w1(Ui−1 −Ui)
w2(Ui+1 −Ui)

]
(30)

27

D
R
A

FT

Eqs. (28) – (30) can be solved using the least-squares method. The algorithm can be implemented

using the face-based data structure. This formulation provides a freedom in the choice of weighting

coefficients wi. These weighting coefficients can be selected as a function of the geometry and/or

solution. Classical approximations in one dimension can be recovered by choosing geometrical

weights of the form wi = 1/|r j − ri|t for values of t = 0,1,2. The numerical experiments in this

work were performed using t = 1. Take an interior quadrilateral cell for example (see Fig. 7),

the number of face-neighboring cells is four. Consequently, the size of the resulting non-square

matrix is 4×2. If there are boundary faces involved, proper boundary conditions have to be used to

calculate the values of the ghost cells first. In the present work, this over-determined linear system

of 4 equations for 2 unknowns is solved in the least-squares sense using either normal equation

approach decomposition to obtain the first derivatives of the reconstructed linear polynomial so-

lution. Note that we need at least two neighboring cells to apply the least-squares method in 2D.

One can easily verify that this least-squares reconstruction satisfies the so-called 1-exactness, i.e.,

it can reconstruct a linear polynomial function exactly.

This idea can be easily extended to 3D, e.g., in the following non-square matrix which can be

solved the same way as introduced above. Note that we need at least three neighboring cells to

apply the least-squares method in 3D. The least squares method gives accurate gradient estimates.

But on highly stretched grids, it can lead to unstable schemes. The use of distance based weight

alleviates the problem to some extent.

Figure 7. Example of the stencil required for reconstruction of an interior cell in 2D.

4.1.2 Green–Gauss Gradient Reconstruction

By applying the Green theorem to cell Ci, we can get the following equation
∫

Ci

∇Ui dV =
∫

∂Ci

Ui ·n dS, (31)

28

D
R
A

FT

in which the integral can be computed using the mid-point rule of quadrature. Finally, the variable

gradients can be obtained with the equation as below

∇Ui =
1

|Ci| ∑
j∈Ni

(
φUi +(1−φ)U j

)
n|Si j| (32)

where the weighted distance factor

φ = |ri j − ri|/(|ri j − ri|+ |ri j − r j|).

4.1.3 Min-Max Gradient Limiter

The basic idea of min-max gradient limiter is that the reconstructed states Ui j must remain between

the minimum and maximum values in the stencil of cell Ci.

Define

Um
i = min

j∈Ni
(Uj,Ui),

UM
i = max

j∈Ni
(Uj,Ui).

(33)

Note that Ui is a component of the solution vector Ui in cell Ci, for example, ρ, u, v, w, and p, if

we choose primitive variables for the reconstruction process. Then we want to choose the larger

value of 0 ≤ φi ≤ 1 so that

Um
i ≤Ui +φi(ri j − ri) ·∇Ui ≤UM

i , ∀Cj ∈ Ni (34)

Define

φi j =

⎧⎪⎪⎨
⎪⎪⎩

min(1,
UM

i −Ui
Δi j

) ifΔi j > 0

min(1,
Um

i −Ui
Δi j

) ifΔi j < 0

1 otherwise

(35)

where Δi j = (ri j − ri) ·∇Ui. Finally,

φi = min
j∈Ni

φi j. (36)

For scalar conservation laws, one can show that this scheme with a monotone flux satisfies local

maximum principle and hence is stable in maximum norm. For Euler equations, this leads to a

very robust scheme but it is not very accurate since it can clip smooth extrema also. Moreover,

this limiter is not a smooth function due to use of min and max functions. This leads to slow

convergence to steady state solutions and in fact we can not obtain convergence to machine zero in

most cases.

29

D
R
A

FT

4.1.4 WENO Gradient Limiter

This least-squares reconstructed finite volume method can be successfully used to solve the 2D

compressible Euler equations for smooth flows on arbitrary grids and is able to achieve the de-

signed second order of accuracy and significantly improve the accuracy of the underlying first-

order finite volume method. However, when extended to solve the 3D compressible Euler equa-

tions on tetrahedral grids, this cell-centered finite volume method suffers from the so-called linear

instability, which occurs even for the linear hyperbolic equation [20]. This linear instability is at-

tributed to the fact that the reconstruction stencils only involve von Neumann neighborhood, i.e.,

adjacent face-neighboring cells [20]. The linear stability can be achieved using extended stencils,

which will unfortunately sacrifice the compactness of the underlying FV methods. Furthermore,

such a linear reconstruction-based finite volume method cannot maintain the non-linear instabil-

ity, leading to non-physical oscillations in the vicinity of strong discontinuities. Alternatively,

ENO/WENO can be used to reconstruct a linear polynomial solution, which can not only enhance

the order of accuracy of the underlying finite volume method but also achieve both linear and

nonlinear stability.

Specifically, the WENO scheme introduced by Dumber et al. [24, 25] is adopted in this work,

where an entire linear polynomial solution on cell Ci is obtained using a nonlinear WENO recon-

struction as a convex combination of the least-squares reconstructed first derivatives at the cell

itself (k = 0) and its face-neighboring cells (k = 1, ...,Nface),

∇UWENO
i =

Nface

∑
k=0

wk∇ULS
k (37)

where the superscript “WENO” denotes the WENO limited gradient of the variable, “LS” the least-

squares reconstructed gradient of the variable, Nface is the number of the face-neighboring cells for

cell Ci, and wk the normalized nonlinear weights. Note that Ui is a component of the solution vector

Ui in cell Ci, for example, ρ, u, v, w, and p, if we choose primitive variables for the reconstruction

process.

The wk is computed as

wk =
w̃k

∑Nface
k=0 w̃k

(38)

The non-normalized nonlinear weights, w̃k, are functions of the linear weights, λk, and the so-

called oscillation indicator ok:

w̃k =
λk

(ε+oi)γ (39)

where ε is a small positive number used to avoid division by zero, and γ an integer parameter to

control how fast the non-linear weights decay for non-smooth stencils. The oscillation indicator is

simply defined as

ok =
√

∇ULS
k ·∇ULS

k (40)

The linear weights λk can be chosen to balance the accuracy and the non-oscillatory property of

the finite volume method.

30

D
R
A

FT

To summarize, the least-squares reconstructed polynomial at the cell itself serves as the central

stencil, and the least-squares reconstructed polynomials on its face-neighboring cells act as biased

stencils in this WENO reconstruction. Notice that this WENO gradient reconstruction is not com-

pact anymore as neighbor’s neighbors are used in the solution update. However, the stencil used in

the reconstruction is compact, involving only von Neumann neighbors. Consequently, this WENO

method can be implemented in a compact manner.

4.2 TVD Slope Limiters

All of the the slope reconstruction and limiting methods described so far can be readily applied

on 1D, 2D, and 3D unstructured meshes. Moreover, a number of classic Total Variation Diminish-

ing (TVD) slope limiters have been implemented in BIGHORN exclusively for 1D unstructured

meshes. Those TVD-type slope limiters, for example, minmod, superbee, and MC, were originally

designed for structured meshes. Nevertheless, it is straightforward to implement those TVD-type

slope limiters in the case of 1D for an unstructured code structure, since it is trivial to locate and

obtain the required information of the left- and right-neighboring cells for each 1D cell , (i.e. the

information in the (i−1)-th and (i+1)-th cells for the i-th cell). Those TVD-type slope limiters are

usually more robust and perform better than those dimension-agnostic reconstruction and limiting

methods to obtain high-resolution monotonic solutions on 1D meshes, and therefore are preferred

for 1D problems.

For a complete description of TVD and slope limiter, see [31].

4.2.1 Minmod Slope Limiter

One choice of slope that gives second-order accuracy for smooth solutions while still satisfying

the TVD property is the minmod slope

φi = minmod

(
Qi −Qi−1

Δx
,
Qi+1 −Qi

Δx

)
(41)

where the minmod function of two arguments is defined by

minmod(a,b) =

⎧⎪⎨
⎪⎩

a if |a|< |b| and ab > 0,

b if |b|< |a| and ab > 0,

0 if ab ≤ 0.

(42)

If a and b have the same sign, then this selects the one that is smaller in modulus, else it returns

zero.

Rather than defining the slope on the ith cell by always using the downwind difference (which

would give the LaxWendroff method), or by always using the upwind difference (which would give

the BeamWarming method), the minmod method compares the two slopes and chooses the one that

31

D
R
A

FT

is smaller in magnitude. If the two slopes have different sign, then the value Qi must be a local

maximum or minimum, and it is easy to check in this case that we must set φi = 0 in order to satisfy

the TVD condition. The minmod method does a fairly good job of maintaining good accuracy in

the smooth hump and also sharp discontinuities in the square wave, with no oscillations. Sharper

resolution of discontinuities can be achieved with other limiters that do not reduce the slope as

severely as minmod near a discontinuity.

4.2.2 Superbee Slope Limiter

One choice of limiter that gives the sharper reconstruction, while still giving second order accuracy

for smooth solutions, is the so-called superbee limiter introduced by Roe [32]:

φi = maxmod(φ(1)i ,φ(2)i) (43)

where

φ(1)i = minmod

(
Qi+1 −Qi

Δx
,2

Qi −Qi−1

Δx

)
,

φ(2)i = minmod

(
2

Qi+1 −Qi

Δx
,
Qi −Qi−1

Δx

)
.

Each one-sided slope is compared with twice the opposite one-sided slope. Then the maxmod

function in Eq. (43) selects the argument with larger modulus. In regions where the solution is

smooth this will tend to return the larger of the two one-sided slopes, but will still be giving an

approximation, and hence we expect second-order accuracy. The superbee limiter is also TVD in

general.

With the superbee method, the discontinuity stays considerably sharper than with the minmod

method. On the other hand, there is a tendency of the smooth hump to become steeper and squared

off. This is sometimes a problem with superbee — by choosing the larger of the neighboring slopes

it tends to steepen smooth transitions near inflection points.

4.2.3 MC Slope Limiter

Another popular choice is the monotonized central-difference limiter (MC limiter), which was

proposed by van Leer [33]:

φi = minmod

((
Qi+1 −Qi−1

2Δx

)
,2

(
Qi −Qi−1

Δx

)
,2

(
Qi+1 −Qi

Δx

))
. (44)

This compares the central difference of Fromm’s method with twice the one-sided slope to either

side. In smooth regions this reduces to the centered slope of Fromm’s method and hence does not

tend to artificially steepen smooth slopes to the extent that superbee does. The MC limiter appears

to be a good default choice for a wide class of problems.

32

D
R
A

FT

5 Temporal Discretization and Integration Methods

5.1 Explicit Time Integration

The finite volume spatial discretization of the governing equations leads to a system of ordinary

differential equations (ODEs) in time, see Eq. (24). By moving all the non-time derivative terms

of Eq. (24) from the left to the right side, an elemental semi-discrete form can be derived as

|Ci|dUi

dt
= Ri(Ui) (45)

where Ri is the elemental residual vector for the ith element, and approaches zero for a steady-

state solution. Ui is the elemental solution vector of Neqn degrees of freedom to be evolved in

time. Each Ui represents solution of Neqn degrees of freedom for the ith cell (for the compressible

Navier–Stokes / Euler equations, Neqn = 3 in 1D, 4 in 2D, and 5 in 3D).

5.1.1 One-Step Explicit Euler Scheme

The one-step explicit Euler scheme can be simply expressed as follows

Un+1
i = Un

i +
Δt
|Ci|Ri(Un

i) (46)

where the superscript “n” denotes the current time level, and “n+ 1” denotes the next time level.

This temporal discretization scheme is first-order accurate in time.

5.1.2 Two-Step Explicit Mid-Point Runge-Kutta Scheme

The two-step explicit mid-point Runge-Kutta scheme can be described in the following two stages

Stage (1) U(1)
i = Un

i +
1

2

Δt
|Ci|Ri(Un

i)

Stage (2) Un+1
i = Un

i +
Δt
|Ci|Ri(U

(1)
i)

(47)

This temporal discretization scheme is second-order accurate in time.

5.1.3 Two-Step Explicit TVD Runge-Kutta Scheme

The two-step explicit TVD Runge-Kutta scheme can be expressed in the following two stages

Stage (1) U(1)
i = Un

i +
1

2

Δt
|Ci|Ri(Un

i)

Stage (2) Un+1
i =

1

2
Un

i +
1

2

(
U(1)

i +
Δt
|Ci|Ri(U

(1)
i)

) (48)

33

D
R
A

FT

This temporal discretization scheme is second-order accurate in time, and used in many transient

benchmark test cases in this work. The validation of its temporal convergence order of accuracy is

shown in Fig. 8 in an independent test case.

10
-11

10
-10

10
-9

10
-8

10
-5

10
-4

L
2

 e
rr

o
r

dt

Explicit TVD-RK2

Figure 8. Verification of temporal accuracy for the two-step TVD Runge-Kutta scheme.

5.1.4 Three-Step Explicit TVD Runge-Kutta Scheme

The following explicit three-stage TVD Runge-Kutta scheme is also widely used to advance the

solution in time [34–36]:

Stage (1) U(1) = Un +
Δt
|Ci|R(Un)

Stage (2) U(2) =
3

4
Un +

3

4

(
U(1) +

Δt
|Ci|R(U(1))

)

Stage (3) Un+1 =
1

3
Un +

2

3

(
U(2) +

Δt
|Ci|R(U(2))

) (49)

This temporal discretization scheme is third-order accurate in time, and linearly stable for a CFL

number less than or equal to 1/(2p+1).

34

D
R
A

FT

5.2 Implicit Time Integration

Several implicit temporal discretization schemes for implicit time integration in the BIGHORN

code are available to choose from the underlying MOOSE framework. In order to achieve the best

solution efficiency, appropriate methods should be chosen for each specific problem. For example,

the first-order backward Euler scheme is usually used for steady-state smooth flow problems; the

second-order backward differentiation formula (BDF2) or second-order Crank–Nicholson (CN2)

scheme is often used for time-accurate unsteady flow simulations. To best retain details of vortices

or features of turbulent flows in long time evolution, the third- or fourth-order diagonally implicit

Runge–Kutta (DIRK) schemes are preferred. Reference literatures include [37–41]. Those are

among the most popular methods for the implicit solution of fluid flow problems. Other methods,

for example, the class of Rosenbrock schemes [42, 43], can also be potentially implemented and

used for long time evolution problems. For low-Mach flow problems, a Pressure-Corrected Implicit

Continuous-fluid Eulerian (PCICE) formulation [44, 45] can be used. The details of the PCICE

scheme are described in Section 8.

35

D
R
A

FT

6 Numerical Flux Schemes

6.1 Overview

If the inviscid fluxes Hinv at the interface in Eq. (26) are simply evaluated as an arithmetical av-

erage of the fluxes at cell Ci, and cell Cj or computed using an arithmetical average of the flow

variables at cell Ci, and cell Cj, the resulting finite volume method, equivalent to a central differ-

ence scheme, allows for the appearance of checker boarding modes, and thus suffers from linear

instability, unless some type of numerical dissipation in the form of artificial viscosity is intro-

duced. To construct a stable scheme and thus ensure linear stability of a finite volume method

for the compressible Euler equations, any of the Riemann solvers can be formulated by adopting

different forms for the numerical fluxes at the interface. A number of numerical schemes, includ-

ing Roe’s flux difference splitting [46], the family of AUSM schemes [47–50], HLLC [51, 52],

and Edwards’ low-diffusion flux-splitting scheme (LDFSS) [53, 54] can be used to compute the

inviscid fluxes at the interfaces. If the cell-averaged variables are used to compute the numerical

fluxes, the resulting upwind finite volume method is only first order accurate in space. A higher

order of accuracy can be achieved using a reconstruction scheme, which consists of finding a poly-

nomial representation to the solution in each control volume, giving the cell-averaged solutions

in each control volume. For the linear reconstruction where a linear polynomial solution on each

cell is reconstructed using cell-averaged values of the flow variables in the neighboring cells, the

computation of the gradients of the flow variables in the control volume is simply required.

36

D
R
A

FT

6.2 HLLC Schemes

The explicit form of the HLLC flux function [51] evaluated at the center of face Si j is defined by

HHLLC(Ul,Ur,ni j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hl(Ul) if SL > 0

H(U∗
l) if SL ≤ 0 < SM

H(U∗
r) if SM ≤ 0 ≤ SR

Hr(Ur) if SR < 0

(50)

where the subscript “l” and “r” denote the state vectors Ui from cell Ci and U j from cell Cj. The

symbols with superscript ”∗” are defined by

U∗
l =

⎡
⎢⎢⎢⎢⎣

ρ∗
l

(ρu)∗l
(ρv)∗l
(ρw)∗l
(ρE)∗l

⎤
⎥⎥⎥⎥⎦= Ωl

⎡
⎢⎢⎢⎢⎣

ρl(SL −ql)
(SL −ql)(ρu)l +(p∗ − pl)nx
(SL −ql)(ρv)l +(p∗ − pl)ny
(SL −ql)(ρw)l +(p∗ − pl)nz
(SL −ql)(ρE)l − plql + p∗SM

⎤
⎥⎥⎥⎥⎦ , (51)

U∗
r =

⎡
⎢⎢⎢⎢⎣

ρ∗
r

(ρu)∗r
(ρv)∗r
(ρw)∗r
(ρE)∗r

⎤
⎥⎥⎥⎥⎦= Ωr

⎡
⎢⎢⎢⎢⎣

ρr(SR −qr)
(SR −qr)(ρu)r +(p∗ − pr)nx
(SR −qr)(ρv)r +(p∗ − pr)ny
(SR −qr)(ρw)r +(p∗ − pr)nz
(SR −qr)(ρE)r − prqr + p∗SM

⎤
⎥⎥⎥⎥⎦ , (52)

and

H∗
l ≡ H(U∗

l) =

⎡
⎢⎢⎢⎢⎣

ρ∗
l SM

(ρu)∗l SM + p∗nx
(ρv)∗l SM + p∗ny
(ρw)∗l SM + p∗nz
((ρE)∗l + p∗)SM

⎤
⎥⎥⎥⎥⎦ , (53)

H∗
r ≡ H(U∗

r) =

⎡
⎢⎢⎢⎢⎣

ρ∗
r SM

(ρu)∗r SM + p∗nx
(ρv)∗r SM + p∗ny
(ρw)∗r SM + p∗nz
((ρE)∗r + p∗)SM

⎤
⎥⎥⎥⎥⎦ . (54)

The Ωl and Ωr are defined as below:

Ωl ≡ (SL −SM)−1, (55)

Ωr ≡ (SR −SM)−1. (56)

The p∗ is defined by

p∗ = ρl(ql −SL)(ql −SM)+ pl = ρr(qr −SR)(qr −SM)+ pr, (57)

where

ql ≡ ulnx + vlny +wlnz, (58)

37

D
R
A

FT

qr ≡ urnx + vrny +wrnz, (59)

with (nx,ny,nz)
T being the unit vector normal to face Si j. SM is taken from Batten et al. [55]:

SM =
ρrqr(SR −qr)−ρlql(SL −ql)+ pl − pr

ρr(SR −qr)−ρl(SL −ql)
(60)

and SL, SR are taken from Einfeldt et al. [56]:

SL = min
[
λ1(Ul),λ1(URoe)

]
, (61)

SR = max
[
λm(URoe),λm(Ur)

]
(62)

where λ1(URoe) and λm(URoe) are the smallest and largest eigenvalues of the Roe matrix [46].

For the linearization of inviscid flux functions, we use an implicit HLLC flux scheme with

the frozen acoustic wave-speed originally introduced by Batten et.al. [51] for the finite volume

methods, which demonstrated an uncompromised speed of convergence and robustness for smooth

flows. The implicit form (differentiation) of the HLLC flux functions in Eq. (50) are given by

Hn+1
HLLC(Ul,Ur,ni j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hn
l +

∂Hl

∂Ul
ΔUl if SL > 0

(H∗
l)

n +
∂H∗

l
∂Ul

ΔUl +
∂H∗

l
∂Ur

ΔUr if SL ≤ 0 < SM

(H∗
r)

n +
∂H∗

r
∂Ul

ΔUl +
∂H∗

r
∂Ur

ΔUr if SM ≤ 0 ≤ SR

Hn
r +

∂Hr

∂Ur
ΔUr if SR < 0

(63)

where for the supersonic case, ∂Hl/∂Ul and ∂Hr/∂Ur are linearization of the original flux functions

that can be computed as below,

∂H
∂U

≡ ∂(FFF ·n)
∂U

=⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 nx ny nz 0
γ−1

2
V 2nx −V⊥u (2− γ)nxu+V⊥ nyu− (γ−1)nxv nzu− (γ−1)nxw (γ−1)nx

γ−1

2
V 2ny −V⊥v nxv− (γ−1)nyu (2− γ)nyv+V⊥ nzv− (γ−1)nyw (γ−1)ny

γ−1

2
V 2nz −V⊥w nxw− (γ−1)nzu nyw− (γ−1)nzv (2− γ)wnz +V⊥ (γ−1)nz

(
γ−1

2
V 2 −h)V⊥ nxh− (γ−1)V⊥u nyh− (γ−1)V⊥v nzh− (γ−1)V⊥w γV⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(64)

where V 2 ≡ V ·V ≡ u2 + v2 +w2, V⊥ ≡ V ·n, and h = (ρE + p)/ρ.

38

D
R
A

FT

For the subsonic case, the HLLC Jacobian matrices are given by

∂H∗
l

∂Ul
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂ρ∗

l
∂Ul

)T

SM +

(
∂SM

∂Ul

)T

ρ∗
l

(
∂(ρu)∗l

∂Ul

)T

SM +

(
∂SM

∂Ul

)T

(ρu)∗l +
(

∂p∗l
∂Ul

)T

nx

(
∂(ρv)∗l

∂Ul

)T

SM +

(
∂SM

∂Ul

)T

(ρv)∗l +
(

∂p∗l
∂Ul

)T

ny

(
∂(ρw)∗l

∂Ul

)T

SM +

(
∂SM

∂Ul

)T

(ρw)∗l +
(

∂p∗l
∂Ul

)T

nz

(
∂(ρE)∗l

∂Ul
+

∂p∗l
∂Ul

)T

SM +

(
∂SM

∂Ul

)T

((ρE)∗l + p∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

∂H∗
l

∂Ur
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
∂ρ∗

l
∂Ur

)T

SM +

(
∂SM

∂Ur

)T

ρ∗
l

(
∂(ρu)∗l

∂Ur

)T

SM +

(
∂SM

∂Ur

)T

(ρu)∗l +
(

∂p∗l
∂Ur

)T

nx

(
∂(ρv)∗l

∂Ur

)T

SM +

(
∂SM

∂Ur

)T

(ρv)∗l +
(

∂p∗l
∂Ur

)T

ny

(
∂(ρw)∗l

∂Ur

)T

SM +

(
∂SM

∂Ur

)T

(ρw)∗l +
(

∂p∗l
∂Ur

)T

nz

(
∂(ρE)∗l

∂Ur
+

∂p∗l
∂Ur

)T

SM +

(
∂SM

∂Ur

)T

((ρE)∗l + p∗)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(65)

where the vectors ∂SM/∂Ul , ∂SM/∂Ur, ∂p∗/∂Ul , and ∂p∗/∂Ur can be computed approximately.

The SM derivatives are computed as follows

∂SM

∂Ul
= ρ̃−1

⎡
⎢⎢⎢⎢⎣

−q2
l +V 2

l (γ−1)/2+SMSL
nx(2ql −SL −SM)− (γ−1)ul
ny(2ql −SL −SM)− (γ−1)vl
nz(2ql −SL −SM)− (γ−1)wl

γ−1

⎤
⎥⎥⎥⎥⎦ ,

∂SM

∂Ur
= ρ̃−1

⎡
⎢⎢⎢⎢⎣

−q2
r −V 2

r (γ−1)/2−SMSR
nx(−2qr +SR +SM)+(γ−1)ur
ny(−2qr +SR +SM)+(γ−1)vr
nz(−2qr +SR +SM)+(γ−1)wr

−(γ−1)

⎤
⎥⎥⎥⎥⎦

(66)

39

D
R
A

FT

where p̃ ≡ ρr(SR −qr)−ρl(SL −ql).

Taking differentiation of Eq. (57) with respect to Ul and Ur respectively gives

∂p∗

∂Ul
= ρr(SR −qr)

∂SM

∂Ul
,

∂p∗

∂Ur
= ρl(SL −ql)

∂SM

∂Ur
.

(67)

The remaining terms in Eq. (65) are given as follows:

∂ρ∗
l

∂Ul
= Ωlρ∗

l
∂SM

∂Ul
+Ωl

⎡
⎢⎢⎢⎢⎣

SL
−nx
−ny
−nz

0

⎤
⎥⎥⎥⎥⎦ ,

∂ρ∗
l

∂Ur
= Ωlρ∗

l
∂SM

∂Ur
,

(68)

and

∂(ρu)∗l
∂Ul

= Ωl

(
nx

∂p∗

∂Ul
+(ρu)∗l

∂SM

∂Ul

)
+Ωl

⎡
⎢⎢⎢⎢⎣

qlul −nxV 2
l (γ−1)/2

SL −ql +nx(γ−2)ul
−ulny +nx(γ−1)vl
−ulnz +nx(γ−1)wl

−(γ−1)nx

⎤
⎥⎥⎥⎥⎦ ,

∂(ρu)∗l
∂Ur

= Ωl

(
nx

∂p∗

∂Ur
+(ρu)∗l

∂SM

∂Ur

)
,

(69)

and

∂(ρv)∗l
∂Ul

= Ωl

(
ny

∂p∗

∂Ul
+(ρv)∗l

∂SM

∂Ul

)
+Ωl

⎡
⎢⎢⎢⎢⎣

qlvl −nyV 2
l (γ−1)/2

−vlnx +ny(γ−1)ul
SL −ql +ny(γ−2)vl
−vlnz +ny(γ−1)wl

−(γ−1)ny

⎤
⎥⎥⎥⎥⎦ ,

∂(ρv)∗l
∂Ur

= Ωl

(
ny

∂p∗

∂Ur
+(ρv)∗l

∂SM

∂Ur

)
,

(70)

and

∂(ρw)∗l
∂Ul

= Ωl

(
nz

∂p∗

∂Ul
+(ρw)∗l

∂SM

∂Ul

)
+Ωl

⎡
⎢⎢⎢⎢⎣

qlwl −nzV 2
l (γ−1)/2

−wlnx +nz(γ−1)ul
−wlny +nz(γ−1)vl
SL −ql +nz(γ−2)wl

−(γ−1)nz

⎤
⎥⎥⎥⎥⎦ ,

∂(ρw)∗l
∂Ur

= Ωl

(
nz

∂p∗

∂Ur
+(ρw)∗l

∂SM

∂Ur

)
,

(71)

40

D
R
A

FT

and

∂(ρE)∗l
∂Ul

= Ωl

(
∂p∗

∂Ul
SM +(p∗+(ρE)∗l)

∂SM

∂Ul

)
+Ωl

⎡
⎢⎢⎢⎢⎣
((ρE)l + pl)ql/ρl −qlV 2

l (γ−1)/2

−nx((ρE)l + pl)/ρl +(γ−1)ulql
−ny((ρE)l + pl)/ρl +(γ−1)vlql
−nz((ρE)l + pl)/ρl +(γ−1)wlql

SL −qlγ

⎤
⎥⎥⎥⎥⎦ ,

∂(ρE)∗l
∂Ur

= Ωl

(
∂p∗

∂Ur
SM +(p∗+(ρE)∗l)

∂SM

∂Ur

)
.

(72)

In the case where SM < 0, the relevant HLLC Jacobian matrices are obtained by simply interchang-

ing subscript l ↔ r and L ↔ R in Eq. (68) through Eq. (72). This completes the definition of the

frozen acoustic wavespeed version of the implicit HLLC flux. In addition, it was also found by

Batten et al. [51] that very little speedup could be further achieved by computing the fully lin-

earized implicit HLLC flux, due to the fact that the extra work required to compute the Jacobians

including the differentiations of the acoustic wavespeed does not significantly favor this version

over the approximated form.

41

D
R
A

FT

7 Boundary Conditions

Reference includes [57–59].

7.1 Slip Wall Boundary Condition

For the Euler equations, the boundary condition must prevent the fluid from penetrating the wall.

We adopted a weak Riemann approach for applying the slip condition on the advection term. The

procedures are as follows.

First, if the interior velocity at the boundary is Vi = [ui,vi,wi]
T, the velocity at the ghost state

can be calculated as:

Vo = Vi −2(Vi ·n)n (73)

This is equivalent to imposing the same tangential component in the ghost state as in the interior,

Vo,t = Vi,t, and an opposite normal component of the velocity, Vo,n = −Vi,n, where the subscript

“t” denotes the tangential direction and the subscript “n” denotes the normal direction.

The density and internal energy are extrapolated from the interior such that the complete ghost

state is

Uo =

⎡
⎢⎢⎢⎢⎣

ρo

(ρu)o

(ρv)o

(ρw)o

(ρE)o

⎤
⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎣

ρi

ρi(ui −2(Vi ·n)nx)
ρi(vi −2(Vi ·n)ny)
ρi(wi −2(Vi ·n)nz)

(ρE)i

⎤
⎥⎥⎥⎥⎦ , (74)

and the boundary flux is calculated through a Riemann solver as

Hinv
b = Hinv(Ui,Uo,nib). (75)

The normal component of the velocity evaluated by the Riemann solver is zero since the only

non-zero contribution to the flux function are those coming from the pressure in the momentum

equations.

The flux Jacobian matrix, dHinv/dUi, can be derived using the chain rule:

dHinv

dUi
=

∂Hinv

∂Ui
+

∂Hinv

∂Uo

dUo

dUi
(76)

where the calculation of the matrices ∂Hinv/∂Ui and ∂Hinv/∂Uo is based on the specific flux func-

tion being used. The matrix dUo/dUi is easy to calculate and given as below

dUo

dUi
=

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0

0 1−2n2
x −2nxny −2nxnz 0

0 −2nxny 1−2n2
y −2nynz 0

0 −2nxnz −2nynz 1−2n2
z 0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎦ (77)

42

D
R
A

FT

7.2 Riemann Invariant Boundary Condition

Type Specify Extrapolate Update

Inflow / outflow M∞ Entropy (outflow) ρ, p

The Riemann invariants correspond to the incoming R− and outgoing R+ characteristic waves.

The invariants determine the locally normal velocity component and the speed of sound. The en-

tropy, s, and the speed of sound, a, are used to determine the density and pressure on the boundary.

The outgoing Riemann invariant, R+, uses the condition from the interior of the domain, Qi =
[ρi,ui,vi,wi, pi]

T:

R+ =Vi,⊥+
2ai

γ−1
(78)

where

Vi,⊥ = Vi ·n = uinx + viny +winz (79)

ai =

(
γpi

ρi

) 1
2

(80)

The incoming Riemann invariant, R−, uses the condition from the exterior of the domain,

Qo = [ρo,uo,vo,wo, po]
T:

R− =Vo,⊥− 2ao

γ−1
(81)

where

Vo,⊥ = Vo ·n = uonx + vony +wonz (82)

ao =

(
γpo

ρo

) 1
2

(83)

If the flow at the boundary is locally supersonic leaving the domain, then no incoming charac-

teristic waves exist; thus, R− is set equal to

R− =Vi,⊥+
2ai

γ−1
(84)

If the flow at the boundary is locally supersonic entering the domain, then no outgoing charac-

teristic waves exist, and R+ is set equal to

R+ =Vo,⊥− 2ao

γ−1
(85)

A velocity, Vb, and the speed of sound, ab, at the boundary are the sum and difference of the

invariants:

Vb =
1

2
(R++R−) (86)

43

D
R
A

FT

ab =
1

4
(γ−1)(R+−R−) (87)

The velocity to be imposed on the boundary depends on the local direction of flow. A non-

positive value of Vi,⊥ (i.e., Vi,⊥ ≤ 0) indicates that the flow is entering the domain, and the entropy

of the exterior condition is used. The velocity and entropy on the boundary are calculated from the

following equations:

ub = uo +(Vb −Vo,⊥)nx (88)

vb = vo +(Vb −Vo,⊥)ny (89)

wb = wo +(Vb −Vo,⊥)nz (90)

sb =
a2

o

γργ−1
o

(91)

Conversely, if the sign of Vi,⊥ is positive (Vi,⊥ > 0), then the flow is leaving the domain, and

the entropy is extrapolated from the interior condition and is used to update the density at the

boundary. The velocity and entropy on the boundary are calculated from the following equations:

ub = ui +(Vb −Vi,⊥)nx (92)

vb = vi +(Vb −Vi,⊥)ny (93)

wb = wi +(Vb −Vi,⊥)nz (94)

sb =
a2

i

γργ−1
i

(95)

Denote the Vb,⊥ as below:

Vb,⊥ = Vb ·n = ubnx + vbny +wbnz (96)

The density and pressure on the boundary are then calculated as follows:

ρb =

(
a2

b

γsb

) 1
γ−1

(97)

pb =
ρba2

b

γ
(98)

So the right-side state variable vector is

Qb =
[
ρb, ub, vb, wb, pb

]T
(99)

The flux Jacobian matrix, ∂F/∂Ui, can be derived using the chain rule:

∂F
∂Ui

=
∂F

∂Qb

∂Qb

∂Ui
, (100)

44

D
R
A

FT

where the ∂F/∂Qb is given as below:

∂F
∂Qb

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vb,⊥ ρbnx ρbny ρbnz 0

Vb,⊥ub 2ρbubnx ρbubny ρbubnz nx

Vb,⊥vb ρbvbnx 2ρbvbny ρbvbnz ny

Vb,⊥wb ρbwbnx ρbwbny 2ρbwbnz nz

Vb,⊥V 2
b

2
Hbnx +ρbubVb,⊥ Hbny +ρbvbVb,⊥ Hbnz +ρbwbVb,⊥

γVb,⊥
γ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (101)

where Hb = ρEb + pb. For the inflow boundary, the ∂Qb/∂Ui can be computed as

∂Qb

∂Ui
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ρb

∂Ui

∂ub

∂Ui

∂vb

∂Ui

∂wb

∂Ui

∂pb

∂Ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρb

γ−1

(
2

ab

∂ab

∂Ui

)

nx

(
1

2

∂R+

∂Ui

)

ny

(
1

2

∂R+

∂Ui

)

nz

(
1

2

∂R+

∂Ui

)

pb

(
1

ρb

∂ρb

∂Ui
+

2

ab

∂ab

∂Ui

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (102)

For the outflow boundary, the ∂Qb/∂Ui can be computed as

∂Qb

∂Ui
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ρb

∂Ui

∂ub

∂Ui

∂vb

∂Ui

∂wb

∂Ui

∂pb

∂Ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρb

γ−1

(
2

ab

∂ab

∂Ui
− 1

sb

∂sb

∂Ui

)

nx

(
1

2

∂R+

∂Ui
− ∂Vi,⊥

∂Ui

)
+

∂ui

∂Ui

ny

(
1

2

∂R+

∂Ui
− ∂Vi,⊥

∂Ui

)
+

∂vi

∂Ui

nz

(
1

2

∂R+

∂Ui
− ∂Vi,⊥

∂Ui

)
+

∂wi

∂Ui

pb

(
1

ρb

∂ρb

∂Ui
+

2

ab

∂ab

∂Ui

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (103)

where the ∂sb/∂Ui is
∂sb

∂Ui
=

ai

γργ
i

(
2ρi

∂ai

∂Ui
− (γ−1)ai

∂ρi

∂Ui

)
. (104)

Other derivatives needed to complete the calculation of Eqs. (102), (103), and (104) include

∂ab

∂Ui
=

γ−1

4

∂R+

∂Ui
, (105)

45

D
R
A

FT

∂R+

∂Ui
=

∂Vi,⊥
∂Ui

+
2

γ−1

∂ai

∂Ui
, (106)

∂ai

∂Ui
=

ai

2pi

(
∂pi

∂Ui
− pi

ρi

∂ρi

∂Ui

)
, (107)

∂Vi,⊥
∂Ui

=

[
−Vi,⊥

ρi
,
nx

ρi
,
ny

ρi
,
nz

ρi
,0

]
, (108)

and

∂Qi

∂Ui
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ρi

∂Ui

∂ui

∂Ui

∂vi

∂Ui

∂wi

∂Ui

∂pi

∂Ui

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

−ui

ρi

1

ρi
0 0 0

− vi

ρi
0

1

ρi
0 0

−wi

ρi
0 0

1

ρi
0

−Vi,⊥
ρi

nx

ρi

ny

ρi

nz

ρi
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (109)

46

D
R
A

FT

8 An Improved PCICE-FEM Algorithm for All-Speed Flows

8.1 Overview

Reference includes [44, 45].

8.2 Governing Equations

In order to develop an all-speed and all-fluid simulation capability, the conservative form of the

Navier–Stokes equations are required. These equations in vector form for single-phase fluids are

the conservation of mass,
∂ρ
∂t

+∇ · (ρu) = ṁ, (110)

the balance of momentum,

∂(ρu)
∂t

+∇ · ((ρu)⊗u) =−∇ · (pIII)+∇ · τττ+ ḃ, (111)

and the conservation of total energy,

∂(ρE)
∂t

+∇ · (ρuH) = ∇ · (τττ ·u)+∇ ·q+u ·b+ ė. (112)

In Eqs. (110) – (112), ρ, ρu, and ρE are the conservative variables — density, momentum, and total

energy, respectively; p is the thermodynamic pressure, III is the identity matrix; u is the velocity

field vector; T is the absolute temperature; q = k∇T is the heat flux vector with k being the thermal

conductivity; and τττ denotes the viscous stress tensor. The system source terms are the mass source,

ṁ, the body force b, the body force kinetic energy effect, u ·b, and the volumetric heat source, ė.

In Eq. (112), H is the total enthalpy, and defined by

H =
ρE + p

ρ
. (113)

For closure, an equation of state (EOS) is required, and assumed to take the general form as below,

p = f (ρ,e), (114)

where e is the specific internal energy. While the PCICE algorithm is not restricted to any specific

EOS, the ideal gas EOS is used throughout the development for it’s simplicity and functional

dependence on the density and internal energy,

p = (γ−1)ρe = ρRcT. (115)

where Rc is the gas constant per unit mass of the fluid.

47

D
R
A

FT

The Navier–Stokes equations can also be written in a compact differential form as

∂U
∂t

+∇ ·F = ∇ ·Fv +Q, (116)

where U is the vector of the conservative variables, (ρ,ρu,ρE)T. Also, F and Fv are the convective

and viscous flux vectors, and Q is the source vector, given by

F =

⎛
⎝ ρu
(ρu)⊗u+ pIII

(ρu)H

⎞
⎠ ,Fv =

⎛
⎝ 0

τττ
τττ ·u+∇ ·q

⎞
⎠ ,Q =

⎛
⎝ ṁ

b
u ·b+ ė

⎞
⎠ . (117)

By setting the right hand side to zero, Eq. (116) represents the compressible Euler equations.

8.3 The Improved PCICE Algorithm

The PCICE algorithm is based on the idea that both the balance of momentum and the conservation

of mass equations can be solved simultaneously to provide for a mathematically strong coupling

between p, ρu, and ρ. The PCICE algorithm is basically composed of two phases: 1) an explicit

predictor, and 2) a semi-implicit corrector.

8.3.1 Explicit Predictor

The explicit predictor phase of the PCICE algorithm is composed of a basic two-step Runge–Kutta

time integration scheme, which is second-order accurate in time,

U(1/2) = Un − Δt
2

∇ · (Fproj −Fv)
n +

Δt
2

Qn, (118)

U(1) = Un −Δt∇ · (Fproj −Fv)
(1/2) +ΔtQ(1/2), (119)

where

Fproj =

⎛
⎝ ρu
(ρu)⊗u
(ρE)u

⎞
⎠ (120)

is the partial convective flux. The pressure gradient term is excluded in the explicit predictor phase

of the PCICE algorithm, but it will be included in the next semi-implicit corrector phase. In Eq.

(119), U(1) is the partial solution for the explicit predictor phase of the PCICE algorithm. It is

important that the quantities ρ, ρu, and ρE be advanced with high-order monotonic algorithms

such as FCT, TVD, or ENO.

8.3.2 Semi-Implicit Corrector

The PCICE algorithm is based on the idea that both the balance of momentum and conservation of

mass equations can be solved simultaneously.

48

D
R
A

FT

Corrector Temporal Discretization

The PCICE algorithm temporal discretization of the governing equations is based on the second-

order Crank–Nicolson scheme (CN2), in order:

1) the balance of momentum,

(ρu)(i)− (ρu)n =− Δt
2

∇ ·
[
(ρu⊗u)(i−1) + (ρu⊗u)n

]
− Δt

2
∇ ·

[
(p(i) + pn)III

]
+

Δt
2

∇ ·
[
(τττ ·u)(i−1) + (τττ ·u)n

]
+

Δt
2
(b(i−1) +bn),

(121)

2) the conservation of mass,

ρ(i)−ρn =−Δt
2

∇ ·
[
(ρu)(i) + (ρu)n

]
+

Δt
2
(ṁ(i−1) + ṁn), (122)

3) the conservation of total energy,

(ρE)(i)− (ρE)n =− Δt
2

∇ ·
[
(ρu)(i)H(i) + (ρu)nHn

]
+

Δt
2

∇ · (q(i−1) +qn)

+
Δt
2

∇ ·
[
(τττ ·u)(i−1) + (τττ ·u)n

]
+

Δt
2
(ė(i−1) + ėn),

(123)

where

H(i) =
(ρE)(i−1) + p(i)

ρ(i)
. (124)

In the above temporal discretization, i is a correction index, and i = 1 refers to the advanced time

predictor solution, U(1), given by Eq. (119). The PCICE algorithm requires two semi-implicit

corrections to achieve second-order accuracy in time. For the semi-implicit correction in Eqs.

(121)-(123), i = 2 and 3, respectively.

Intermediate Momentum Solution

Directly substituting Eq. (121) into Eq. (122) will yield the second-order derivatives of the outer

product contained in the balance of momentum convective flux terms, and the third-order deriva-

tives for the divergence of the divergence of the viscous stress tensor. In avoid those difficult

terms, an intermediate explicit momentum solution, composed of the previous iteration terms in

Eq. (121), is employed,

S(i) = (ρu)n − Δt
2

∇ ·
[
(ρu⊗u)(i−1) + (ρu⊗u)n

]
+

Δt
2

∇ ·
[
(τττ ·u)(i−1) + (τττ ·u)n

]
+

Δt
2
(b(i−1) +bn).

(125)

49

D
R
A

FT

Solving this intermediate step allows Eq. (121) to be re-written in terms of the intermediate mo-

mentum solution, S(i), by substituting Eq. (125) into Eq. (121), yielding

(ρu)(i) = S(i)− Δt
2

∇ ·
[
(p(i) + pn)III

]
. (126)

Eq. (126) is the pressure correction equation for the momentum components once p(i) is known.

As will be shown below, the explicit values of S(i) will be incorporated into the pressure Poisson

equation, while the integral form of S(i) will be employed in the momentum component pressure

correction for efficiency.

Pressure Poisson Equation

The first point to consider is what pressure variable the pressure Poisson equation (PPE) should

solve. There are three obvious choices: the thermodynamic pressure, p(i), the change in pressure

across a time step, p(i)− pn, and a pressure correction variable, δp(i) = p(i)− p(i−1). We have

found that a pressure correction variable provides the best performance, and great ease in applying

the Dirichlet and Neumann boundary conditions for solving the Krylov subspace method, such as

GMRES and BiCSTAB.

Solving the pressure correction variable for δp(i) and substituting into Eq. (126) yields

(ρu)(i) = S(i)− Δt
2

∇ ·
[
(δp(i) + p(i−1) + pn)III

]
. (127)

Eq. (127) is mathematically identical to Eq. (121), and is now in a form that can be easily substi-

tuted into Eq. (122), which eliminates (ρu)(i) as an unknown, and yields the preliminary form of

the PPE,

ρ(i)−ρn =−Δt
2

∇ ·
[
S(i) + (ρu)n

]
+

Δt
2
(ṁ(i−1) + ṁn)+

Δt2

4
∇ ·∇(δp(i) + p(i−1) + pn). (128)

Note that Eq. (128) is still a representation of the change in density composed of the explicit

convection and source terms with an implicit pressure correction. For the same efficiency reason

that we collect explicit momentum terms into S(i), we now collect the explicit mass convection,

source, and pressure terms of Eq. (128) into a new mass variable,

G(i) =−Δt
2

∇ ·
[
S(i) + (ρu)n

]
+

Δt
2
(ṁ(i−1) + ṁn)+

Δt2

4
∇ ·∇(p(i−1) + pn). (129)

G(i) differs from S(i) in that it will be used only in an integral form. Eq. (128) can now be

represented in terms of G(i), yielding,

ρ(i)−ρn = G(i) +
Δt2

4
∇ ·∇δp(i). (130)

Eq. (130) is the pressure correction equation of the PCICE algorithm for density once δp(i) is

known.

50

D
R
A

FT

Eq. (130) results from the substitution of the momentum balance equations into the mass con-

servation equations to eliminate the implicit momentum components as unknowns. This leaves the

situation where there is now one equation and two unknowns, i.e., ρ(i) and δp(i). To achieve the

closure, we employ the general-form EOS in Eq. (114) to express ρ(i) in terms of δp(i). Differen-

tiating Eq. (114) with respect to time

ρ(i)−ρn =
δp(i) + p(i−1)− pn

∂ f
∂ρ |e

−
∂ f
∂e |ρ
∂ f
∂ρ |e

(e(i−1)− en) (131)

and equating with the change in density term of Eq.(130) yields the final form of the PPE of the

PCICE algorithm,

1
∂ f
∂ρ |e

δp(i)− Δt2

4
∇ ·∇δp(i) =

∂ f
∂e |ρ
∂ f
∂ρ |e

(e(i−1)− en)− 1
∂ f
∂ρ |e

(p(i−1)− pn)+G(i). (132)

Pressure Correction Equations

At this point, all the pressure correction equations have appeared in the PCICE algorithm. With

the solution of Eq. (132) for δp(i), Eqs. (126), (130), and (123) can be solved, in order:

1) momentum:

(ρu)(i) = S(i)− Δt
2

∇ ·
[
(p(i) + pn)III

]
. (133)

2) mass:

ρ(i) = ρn +G(i) +
Δt2

4
∇ ·∇δp(i). (134)

3) total energy:

(ρE)(i) = (ρE)n − Δt
2

∇ ·
[
(ρu)(i)H(i) + (ρu)nHn

]
+

Δt
2

∇ · (q(i−1) +qn)

+
Δt
2

∇ ·
[
(τττ ·u)(i−1) + (τττ ·u)n

]
+

Δt
2
(ė(i−1) + ėn),

(135)

The PCICE Algorithmic Steps

The algorithmic steps for the improved PCICE algorithm are as follows:

51

D
R
A

FTAlgorithm 1 PCICE

1: procedure EXPLICIT PREDICTOR

2: Solve Eq. (118) for U(1/2).

3: Solve Eq. (119) for U(1).

4: end procedure
5: procedure SEMI-IMPLICIT CORRECTOR

6: Stage 1 of CN2:

7: Solve Eq. (132) for δp(2), and subsequently p(2).
8: Solve Eq. (125) for S(2).

9: Solve Eq. (133) for (ρu)(2), Eq. (134) for ρ(2), and Eq. (135) for (ρE)(2).
10: Stage 2 of CN2:

11: Solve Eq. (132) for δp(3), and subsequently p(3).
12: Solve Eq. (125) for S(3).

13: Solve Eq. (133) for (ρu)(3), Eq. (134) for ρ(3), and Eq. (135) for (ρE)(3).
14: end procedure

52

D
R
A

FT

9 Code Verification and Validation Test Cases

9.1 Overview

Verification testing is part of our software quality control process and ensures that BIGHORN is

solving problems of interest to the Idaho National Laboratory’s Laboratory Directed Research and

Development (LDRD) project entitled “Development of a Multiphysics Algorithm for Analyzing

the Integrity of Nuclear Reactor Containment Vessels Subjected to Extreme Thermal and Overpres-

sure Loading Conditions”, while meeting the necessary design requirements. It is one component

of a larger testing infrastructure. This section identifies verification & validation problems of inter-

est to the project, and summarizes the BIGHORN solutions to these problems. We anticipate that

this section, like the code, will change over time. This section will have a wide audience of readers

from the nuclear reactor safety and analysis areas, and is designed to be a concise report of both

test setup and results. Contributors are encouraged to provide additional problems when appropri-

ate, and include references to more in-depth discussions when needed. The tests are organized by

methods and physics to enable a quick survey of code capabilities. Each test has a subsection in

this section with subsubsections describing why the test is included (§Problem Description), and

the setup and computational results of the test (§Problem Setup). All the files required to reproduce

the test results are located in the BIGHORN repository under the test/cnsfv directory. Reference

includes [60–63].

53

D
R
A

FT

9.2 Sod Shock Tube

9.2.1 Problem Description

The Sod shock tube is a Riemann problem used as a standard test problem in computational hy-

drodynamics. The initial conditions are simple: a contact discontinuity separating gasses with

different pressure and density and zero velocity everywhere. The governing equations are the 1D

Euler equations with a constant ratio of specific heats of 1.4. The computational domain is bounded

between x = 0 and x = 1, and 400 elements are uniformly distributed in the domain. The reflectory

condition is imposed at the left and right boundaries. The initial conditions are described as below:{
ρ = 1,vx = 0, p = 1 for x = [0,0.5]

ρ = 0.125,vx = 0, p = 0.1 for x = (0.5,0.1]

9.2.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

simulation was started at t = 0, and terminated at t = 0.2. The computed density, Mach number,

and pressure profiles are compared with the analytical solution data, and plotted in Figs. 9, 10, 11,

respectively.

Item Specifics

Governing equations 1D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction None

Stabilization scheme Minmod slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

9.2.3 Input Files

The input file for this test case can be found at tests/cnsfv/1d sod shock tube.i under the

BIGHORN repository.

54

D
R
A

FT

9.2.4 Mesh Files

The framework generated mesh is used for this test case. No mesh file is required.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
en

si
ty

x

400 elements
Analytical

Figure 9. Density profile at t = 0.2 for the Sod shock tube.

55

D
R
A

FT 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ac

h
 n

u
m

b
er

x

400 elements
Analytical

Figure 10. Mach number profile at t = 0.2 for the Sod shock tube.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ss
u

re

x

400 elements
Analytical

Figure 11. Pressure profile at t = 0.2 for the Sod shock tube.

56

D
R
A

FT

9.3 Lax Shock Tube

9.3.1 Problem Description

The Lax shock tube is a Riemann problem used as a standard test problem in computational hydro-

dynamics. It is more challenging than the Sod shock tube problem, as the shock wave involved is

much stronger in this problem. The governing equations are the 1D Euler equations with a constant

ratio of specific heats of 1.4. The computational domain is bounded between x = 0 and x = 1, and

400 elements are uniformly distributed in the domain. The reflectory condition is imposed at the

left and right boundaries. The initial conditions are described as below:{
ρ = 0.445,vx = 0.698, p = 3.528 for x = [0,0.5]

ρ = 0.5,vx = 0, p = 0.571 for x = (0.5,0.1]

9.3.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

simulation was started at t = 0, and terminated at t = 0.15. The computed density, Mach number,

and pressure profiles are plotted in Figs. 12, 13, 14, respectively.

Item Specifics

Governing equations 1D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction None

Stabilization scheme Minmod slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

9.3.3 Input Files

The input file for this test case can be found at tests/cnsfv/1d lax shock tube.i under the

BIGHORN repository.

57

D
R
A

FT

9.3.4 Mesh Files

The framework generated mesh is used for this test case. No mesh file is required.

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
en

si
ty

x

400 elements
Analytical

Figure 12. Density profile at t = 0.15 for the Lax shock tube.

58

D
R
A

FT 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ac

h

x

400 elements
Analytical

Figure 13. Mach number profile at t = 0.15 for the Lax shock tube.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ss
u

re

x

400 elements
Analytical

Figure 14. Pressure profile at t = 0.15 for the Lax shock tube.

59

D
R
A

FT

9.4 Woodward–Collela Blast Wave

9.4.1 Problem Description

This problem was first used as a test problem by Woodward & Colella [64]. The two discontinuities

in the initial data each have the form of a shock-tube problem, and yield strong shock waves and

contact discontinuities going inwards and rarefaction waves going outwards. This is a challenging

test problem because of the strength of the shocks involved and the interaction of the different

waves. The governing equations are the 1D Euler equations with a constant ratio of specific heats

of 1.4. The computational domain is bounded between x = 0 and x = 1. Two meshes that consist

of 500 and 4000 equi-distant elements respectively, were used in computation. The reflectory

condition is imposed at the left and right boundaries. The initial conditions can be described as

below: ⎧⎪⎨
⎪⎩

ρ = 1,vx = 0, p = 1000 for x = [0,0.1]

ρ = 1,vx = 0, p = 0.01 for x = (0.1,0.9]

ρ = 1,vx = 0, p = 100 for x = (0.9,1]

9.4.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

simulation was started at t = 0, and terminated at t = 0.038. The computed density, velocity, and

pressure profiles are plotted in Figs. 15, 16, 17, respectively.

Item Specifics

Governing equations 1D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction None

Stabilization scheme Minmod slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

9.4.3 Input Files

The input file for this test case can be found at tests/cnsfv/1d woodward colella blast wave.i
under the BIGHORN repository.

60

D
R
A

FT

9.4.4 Mesh Files

The framework generated mesh is used for this test case. No mesh file is required.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
en

si
ty

x

500 elements
4000 elements

Figure 15. Density profile at t = 0.038 for the Woodward–Collela blast wave.

61

D
R
A

FT 0

 0.5

 1

 1.5

 2

 2.5

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
ac

h
 n

u
m

b
er

x

500 elements
4000 elements

Figure 16. Mach number profile at t = 0.038 for the Woodward–Collela blast wave.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ss
u

re

x

500 elements
4000 elements

Figure 17. Pressure profile at t = 0.038 for the Woodward–Collela blast wave.

62

D
R
A

FT

9.5 Sedov Blast Wave in 1D

9.5.1 Problem Description

The solution for a blast wave created by a “point explosion” in a uniform medium was derived

independently during the World War II by John von Neumann, Leonid Sedov, and by Sir Geoffrey

Taylor. The exact solution is specified in detail in [65,66]. This problem contains very low density

with strong shocks. In this test case, the governing equations are the 1D Euler equations with

a constant ratio of specific heats of 5/3. The computational domain is bounded between x = 0

and x = 1. Two meshes that consist of 400 and 800 equi-distant elements respectively, were used

in computation. The symmetry condition is imposed at the left boundary, and the free outflow

condition at the right boundary. The initial conditions can be described as below:{
ρ = 1,vx = 0, p = 1591549 for x = [0,Δx]
ρ = 1,vx = 0, p = 1e−8 for x = (Δx,1]

where Δx means the length of a single element.

9.5.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

simulation was started at t = 0, and terminated at t = 0.005. The computed density, velocity, and

pressure profiles are plotted in Figs. 18, 19, 20, respectively.

Item Specifics

Governing equations 1D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction None

Stabilization scheme Minmod slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

9.5.3 Input Files

The input files for this test case can be found at tests/cnsfv/1d sedov blast wave.i and

tests/cnsfv/1d sedov blast wave dtmin.i under the BIGHORN repository. They correspond

63

D
R
A

FT

to the two cases of 1) fixed time-step size, and 2) CFL-condition allowed maximum time-step size,

respectively.

9.5.4 Mesh Files

The framework generated mesh is used for this test case. No mesh file is required.

 0

 1

 2

 3

 4

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
en

si
ty

x

400 elements
800 elements

Figure 18. Density profile at t = 0.005 for the Sedov blast wave.

64

D
R
A

FT 0

 20

 40

 60

 80

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
el

o
ci

ty

x

400 elements
800 elements

Figure 19. Velocity profile at t = 0.005 for the Sedov blast wave.

 0

 2000

 4000

 6000

 8000

 10000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ss
u

re

x

400 elements
800 elements

Figure 20. Pressure profile at t = 0.005 for the Sedov blast wave.

65

D
R
A

FT

9.6 Double Rarefaction Wave

9.6.1 Problem Description

This problem was originally introduced by Linde & Roe [67] in order to test the robustness of the

Euler solver codes. This test case contains low pressure and low density regions, and is difficult

to simulate. The governing equations are the 1D Euler equations with a constant ratio of specific

heats of 1.4. The computational domain is bounded between x = 0 and x = 1. Two meshes that

consist of 400 and 800 equi-distant elements respectively, were used in computation. The free

outflow condition is imposed at both the left and right boundaries. The initial conditions can be

described as below: {
ρ = 7,vx =−1, p = 0.2 for x = [−1,0]

ρ = 7,vx = 1, p = 0.2 for x = (0,1]

9.6.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

simulation was started at t = 0, and terminated at t = 0.6. The computed density, velocity, and

pressure profiles are plotted in Figs. 21, 22, 23, respectively.

Item Specifics

Governing equations 1D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction None

Stabilization scheme Minmod slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

9.6.3 Input Files

The input files for this test case can be found at tests/cnsfv/1d double rarefaction wave.i
under the BIGHORN repository.

66

D
R
A

FT

9.6.4 Mesh Files

The framework generated mesh is used for this test case. No mesh file is required.

 0

 1

 2

 3

 4

 5

 6

 7

 8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

x

400 elements
800 elements

Figure 21. Density profile at t = 0.6 for the double rarefaction wave.

67

D
R
A

FT-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

V
el

o
ci

ty

x

400 elements
800 elements

Figure 22. Velocity profile at t = 0.6 for the double rarefaction wave.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

P
re

ss
u

re

x

400 elements
800 elements

Figure 23. Pressure profile at t = 0.6 for the double rarefaction wave.

68

D
R
A

FT

9.7 Inviscid Flow through a 2D Channel

9.7.1 Problem Description

This problem is aimed at testing the developed numerical methods for the computation of internal

flow. In this subsonic flow problem, the geometry is smooth, and so is the flow. Entropy should

be a constant in the flow field. The L2 norm of the entropy error can be used as the indicator of

solution accuracy since the analytical solution is unknown. The convergence rate can be expected

to be P+1, where P is order of the discrete polynomial approximation. The governing equations

are the 2D Euler equations with a constant ratio of specific heats of 1.4. The upper and lower walls

are slip walls. The computational domain is bounded between x =−1.5 and x = 1.5, and between

the bump and y = 0.8, as shown in Fig. 24. The bump is defined as

y = 0.0625e−25x2
.

The inflow Mach number is 0.5 with 0 angle of attack. Total pressure and temperature is imposed

as an inflow boundary condition on the left boundary, and a constant static pressure is imposed on

the outflow boundary.

9.7.2 Problem Setup

The numerical methods used to setup the simulations are summarized in the following table. The

Item Specifics

Governing equations 2D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction Least-squares slope reconstruction

Stabilization scheme None

Numerical flux scheme HLLC

Execution Steady

Temporal discretization Implicit backward Euler

Linear solver ILU(0) preconditioned GMRES

main objective is to demonstrate grid convergence of drag on a sequence of successively refined

meshes. As shown in Fig. 24, four unstructured quadrilateral meshes were used for calculations.

The simulations were started from a uniform free stream Mach number of 0.5 everywhere, and the

L2 norm of the density residual was monitored. The computed steady-state Mach number contours

are shown in Fig. 25. The following entropy error was used as the accuracy indicator:

ErrL2(Ω) =

√∫
Ω

(
p

p∞
(
ρ∞
ρ
)γ −1

)2

dV

69

D
R
A

FT

The plot of L2 entropy error vs. length scale h (i.e., h = (nDOFs)−1/2) is displayed in Fig. 26,

which shows an average order of accuracy of 1.81. The plot of L2 entropy error vs. time-step is

shown in Fig. 27. All the tests reached full convergence within 10 time steps. In Table 2, the raw

data is provided in three columns, i.e. h, L2 error, and work units.

Table 2. Raw data for inviscid flow through a channel.

Mesh nDOFs h L2 error Work units

Ref.2 260 0.06201737 0.00386033

Ref.3 900 0.03333333 0.00133776

Ref.4 3332 0.01732397 0.00036614

Ref.5 12804 0.00883745 0.00011455

9.7.3 Input Files

A set of four input files for this test case can be found at

• tests/cnsfv/2d bump impl ref2.i

• tests/cnsfv/2d bump impl ref3.i

• tests/cnsfv/2d bump impl ref4.i

• tests/cnsfv/2d bump impl ref5.i

under the BIGHORN repository, respectively.

9.7.4 Mesh Files

A set of four GMSH format mesh files corresponding to the four input files can be found at

• tests/cnsfv/SmoothBump quad ref2 Q1.msh

• tests/cnsfv/SmoothBump quad ref3 Q1.msh

• tests/cnsfv/SmoothBump quad ref4 Q1.msh

• tests/cnsfv/SmoothBump quad ref5 Q1.msh

under the BIGHORN repository, respectively.

70

D
R
A

FT
(a) Ref. 2

(b) Ref. 3

(c) Ref. 4

(d) Ref. 5

Figure 24. Computational meshes for inviscid flow through a channel.

71

D
R
A

FT
(a) Ref. 2

(b) Ref. 3

(c) Ref. 4

(d) Ref. 5

Figure 25. Steady-state Mach number contours for inviscid flow through a channel.

72

D
R
A

FT10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

L
2

 e
rr

o
r

(nDOFs)
-1/2

LS(P0P1) 1.81

Figure 26. L2 entropy error vs. length scale h for inviscid flow through a channel.

10
-4

10
-3

10
-2

 0 2 4 6 8 10 12 14 16 18 20

L
2

 e
rr

o
r

Time-step

Impl. Ref.2
Impl. Ref.3
Impl. Ref.4
Impl. Ref.5

Figure 27. L2 entropy error vs. time-step for inviscid flow through a channel.

73

D
R
A

FT

9.8 Inviscid Flow past a 2D Circular Cylinder

9.8.1 Problem Description

This problem is aimed at testing the developed numerical methods for the computation of external

flow. In this subsonic flow problem, the geometry is smooth, and so is the flow. Entropy should

be a constant in the flow field. The L2 norm of the entropy error can be used as the indicator of

solution accuracy since the analytical solution is unknown. The convergence rate can be expected

to be P+1, where P is order of the discrete polynomial approximation. The governing equations

are the 2D Euler equations with a constant ratio of specific heats of 1.4. The computational domain

is bounded between r = 0.5 and r = 20, as shown in Fig. 28. The infinity-condition Mach number

is 0.5 with 0 angle of attack. The slip condition is imposed on the wall surface of the cylinder, and

the Riemann invariant condition is imposed on the far-field boundary.

9.8.2 Problem Setup

The numerical methods used for running the simulations in this test case are summarized in the

following table. The main objective is to demonstrate grid convergence of drag on a sequence of

Item Specifics

Governing equations 2D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction Least-squares slope reconstruction

Stabilization scheme None

Numerical flux scheme HLLC

Execution Steady

Temporal discretization Implicit backward Euler

Linear solver ILU(0) preconditioned GMRES

successively refined meshes. As shown in Fig. 28, three unstructured quadrilateral meshes were

used for calculations. Let us take the Lv.2 mesh as an example as to explain how the meshes

were generated. First, 8 intervals were specified along the axial direction, with a 0.008 fraction

of the axial length of the domain for the first interval adjacent to the cylinder wall. 32 constant

intervals were then specified radially, resulting in a mesh that contains 32×8 elements. The Lv.3

and Lv.4 meshes were then generated through successive mesh refinement, where the nodes of the

cylinder surface were fitted on the perimeter of the inner circle. The simulations were started from

a uniform free stream Mach number of 0.5 everywhere, and the L2 norm of the density residual

was monitored. The computed steady-state Mach number contours are shown in Fig. 29. The

74

D
R
A

FT

following entropy error was used as the accuracy indicator:

ErrL2(Ω) =

√∫
Ω

(
p

p∞
(
ρ∞
ρ
)γ −1

)2

dV

The plot of L2 entropy error vs. length scale h (i.e., h = (nDOFs)−1/2) is displayed in Fig. 30,

which shows an average order of accuracy of 1.86. The plot of L2 entropy error vs. time-step is

shown in Fig. 31. All the tests reached full convergence within 40 time steps. In Table 3, the raw

data is provided in three columns, i.e. h, L2 error, and work units.

Table 3. Raw data for inviscid flow past a circular cylinder.

Mesh nDOFs h L2 error Work units

Lv.2 32×8 0.062500 0.03654315

Lv.3 64×16 0.031250 0.00954726

Lv.4 128×64 0.015625 0.00277384

9.8.3 Input Files

A set of three input files using explicit time integration and a set of three input files using implicit

time integration can be found at

• tests/cnsfv/2d cyln expl lv2.i

• tests/cnsfv/2d cyln expl lv3.i

• tests/cnsfv/2d cyln expl lv4.i

and

• tests/cnsfv/2d cyln impl lv2.i

• tests/cnsfv/2d cyln impl lv3.i

• tests/cnsfv/2d cyln impl lv4.i

under the BIGHORN repository, respectively.

75

D
R
A

FT

9.8.4 Mesh Files

A set of three Exodus-II format mesh files corresponding to either set of the three input files can

be found at

• tests/cnsfv/2d cyln mesh lv2.e

• tests/cnsfv/2d cyln mesh lv3.e

• tests/cnsfv/2d cyln mesh lv4.e

under the BIGHORN repository, respectively.

76

D
R
A

FT(a) Lv. 2

(b) Lv. 3

(c) Lv. 4

Figure 28. Computational meshes for inviscid flow past a cylinder.

77

D
R
A

FT(a) Lv. 2

(b) Lv. 3

(c) Lv. 4

Figure 29. Steady-state Mach number contours for inviscid flow past a cylinder.

78

D
R
A

FT10
-3

10
-2

10
-1

10
-3

10
-2

10
-1

L
2

 e
rr

o
r

(nDOFs)
-1/2

LS(P0P1): 1.86

Figure 30. L2 entropy error vs. length scale h for inviscid flow past a cylinder.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

10
0

10
1

10
2

L
2

 e
rr

o
r

Time-step

Impl. Lv.2
Impl. Lv.3
Impl. Lv.4

Figure 31. L2 entropy error vs. time-step for inviscid flow past a cylinder.

79

D
R
A

FT

9.9 A 2D Mach-3 Wind Tunnel with a Step

9.9.1 Problem Description

This 2-D test problem was originally introduced in [68], which has proven to be a useful test for

a large number of methods over the decades. We set up this test case by following the description

in [64]. The problem begins with uniform Mach 3 flow in a wind tunnel containing a step. The

wind tunnel is 1 length unit high in the y-direction, and 3 length units long in the x-direction. The

step is 0.2 length unit high, and is located 0.6 length unit from the left end of the tunnel. The

governing equations are the 2D Euler equations with a constant ratio of specific heats of 1.4. The

computational domain is shown in Fig. 32. The infinity conditions are density 1.0, velocity 3.0
with 0 angle of attack, and pressure 1/1.4. The slip condition is imposed on the wall surface of the

tunnel, and the Riemann invariant condition is imposed on the left-end inflow boundary and the

right-end outflow boundary.

9.9.2 Problem Setup

The numerical methods used for running the simulations in this test case are summarized in the

following table. The simulations were started at t = 0.0 and terminated at t = 4.5. The infinity

Item Specifics

Governing equations 2D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction Least-squares slope reconstruction

Stabilization scheme Min-max slope limiter

Numerical flux scheme HLLC

Execution Transient

Temporal discretization Explicit two-step TVD Runge-Kutta

Linear solver None

conditions mentioned above were used as initial conditions everywhere in the domain. Note that

the coner of the step is the center of a rarefaction fan and hence is a singular point of the flow field.

Nothing special was done at this singular point in this test case. Consequently the flow field in this

corner region is seriously affected by large numerical errors generated in the neighborhood of this

singular point. These errors case a boundary layer of a bout one zone in thickness to form above

the step in the wind tunnel. Shocks then interact with this boundary layer, and the qualitative nature

of the flow field in the tunnel is altered more or less dramatically, depending upon the the spatial

scheme and the mesh used. Some special boundary conditions were used in [64], in an attempt to

particularly minimize numerical errors generated at the corner of the step for this problem. The

time evelution, up to t = 4, of the density distributionin the wind tunnel is displayed in Figs. 33–39.

80

D
R
A

FT

In addition, the transient pressure and Mach number distributions are displayed in Figs. 40 and 41,

respectively. Notice that the flow field at t = 4 is still unsteady. As shown in [69], a steady-state

flow field of this problem develops by t = 12, which has very little structure.

9.9.3 Input Files

The input file for this test case can be found at tests/cnsfv/2d mach3step.i under the BIGHORN

repository.

9.9.4 Mesh Files

The Exodus-II format mesh file can be found at tests/cnsfv/2d mach3step.e under the BIGHORN

repository.

Figure 32. The unstructured quadrilateral mesh for a Mach-3 wind tunnel with a step.

81

D
R
A

FTFigure 33. Density contours at about t = 0.5 for a Mach-3 wind tunnel with a step.

Figure 34. Density contours at about t = 1.0 for a Mach-3 wind tunnel with a step.

Figure 35. Density contours at about t = 1.5 for a Mach-3 wind tunnel with a step.

82

D
R
A

FTFigure 36. Density contours at about t = 2.0 for a Mach-3 wind tunnel with a step.

Figure 37. Density contours at about t = 2.5 for a Mach-3 wind tunnel with a step.

Figure 38. Density contours at about t = 3.0 for a Mach-3 wind tunnel with a step.

83

D
R
A

FTFigure 39. Density contours at about t = 4.0 for a Mach-3 wind tunnel with a step.

Figure 40. Pressure contours at about t = 4.0 for a Mach-3 wind tunnel with a step.

Figure 41. Mach number contours at about t = 4.0 for a Mach-3 wind tunnel with a step.

84

D
R
A

FT

9.10 Inviscid Bow Shock Upstream of a Blunt Body in Supersonic Flow

9.10.1 Problem Description

Taken from the third baseline inviscid test case (BI3) of the 4th International Workshop on High-

Order CFD Methods (https://how4.cenaero.be/), this case is designed to isolate testing of the

shockcapturing properties of schemes using the detached bow shock upstream of a two-dimensional

blunt body in supersonic flow. The governing equations are the 2D Euler equations with a constant

ratio of specific heats of 1.4. The computational domain is shown in Fig. 42. The geometry is

a flat center section, with two constant radius sections top and bottom. The flat section is 1 unit

length, and each radius is 1/2 unit length. While the flow is symmetric top and bottom, a full

domain is computed to support potentially spurious behavior. The aft section of the body is not

included to avoid developing an unsteady wake. The infinity conditions are density 1, velocity 4

with 0 angle of attack, and pressure 1/1.4. Since the incoming freestream is at Mach 4, the inflow

and outflow are both supersonic, so Dirichlet and Neumann boundary conditions respectively can

be prescribed. The solid surface uses a standard impermeable wall specification (V ·n = 0). In our

configuration, the slip condition is imposed on the wall surface of the blunt body (SideSet 1), and

the Riemann invariant condition is imposed on the inflow boundary (SideSet 4) and the outflow

boundary (SideSet 2 and 3).

9.10.2 Problem Setup

The numerical methods used for running the simulations in this test case are summarized in the

following table. A series of three meshes, Lv. 0 (nelem = 2220, npoin = 2325), Lv. 1 (nelem =

Item Specifics

Governing equations 2D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction Least-squares slope reconstruction

Stabilization scheme Min-max slope limiter

Numerical flux scheme HLLC

Execution Steady

Temporal discretization Explicit Euler

Linear solver None

7776, npoin = 7975), and Lv. 2 (nelem = 29008, npoin = 29403), are provided by the work-

shop, as shown in Fig. 43. The meshes are not hierarchical. At each refinement the clustering near

the shock location and the surface in increased. These meshes all cluster around the asymptotic

shock location (i.e. at coarse resolutions the computed shock will be in the incorrect location rel-

ative to the mesh, but should converge to the predicted location). The mesh is designed so that a

85

D
R
A

FT

Figure 42. Computational domain for inviscid bow shock upstream of a blunt body in Mach-4

supersonic flow.

single element / cell / stencil straddles the asymptotic shock location. The stead-state density, pres-

sure, and Mach numbers contours are plotted in Figs. 44, 45, 46, respectively. Over the contours

obtained on the Lv. 0 mesh, a wide shock interface can be seen, due to the relative coarseness of

the Lv. 0 mesh in the shock region. After the mesh is locally successively refined in the shock

region, a very thin shock interface is resolved on the Lv. 2 mesh. Furthermore, the density, pres-

sure, and Mach number values computed on the cell vertices are plotted for x ∈ [−1.5,−1.2] along

the symmetry line of y = 0, as shown in Figs. 47, 48, 49, respectively. Grid convergence of the

oscillation-free solution profiles can be observed in each of those figures, where the shock interface

become sharper and sharper as more refined meshes are used.

86

D
R
A

FT

9.10.3 Input Files

A set of three input files using explicit time integration can be found at

• tests/cnsfv/2d bowshock expl lv0.i

• tests/cnsfv/2d bowshock expl lv1.i

• tests/cnsfv/2d bowshock expl lv2.i

under the BIGHORN repository.

9.10.4 Mesh Files

A set of three GMSH format mesh files corresponding to either set of the three input files can be

found at

• tests/cnsfv/2d bowshock mesh lv0.msh

• tests/cnsfv/2d bowshock mesh lv1.msh

• tests/cnsfv/2d bowshock mesh lv2.msh

under the BIGHORN repository.

87

D
R
A

FT

(a) Lv. 0 (b) Lv. 1 (c) Lv. 2

Figure 43. A set of three successively refined unstructured quadrilateral meshes for inviscid bow

shock upstream of a blunt body in Mach-4 supersonic flow.

88

D
R
A

FT

(a) Lv. 0 (b) Lv. 1 (c) Lv. 2

Figure 44. Steady-state density contours for inviscid bow shock upstream of a blunt body in

Mach-4 supersonic flow.

89

D
R
A

FT

(a) Lv. 0 (b) Lv. 1 (c) Lv. 2

Figure 45. Steady-state pressure contours for inviscid bow shock upstream of a blunt body in

Mach-4 supersonic flow.

90

D
R
A

FT

(a) Lv. 0 (b) Lv. 1 (c) Lv. 2

Figure 46. Steady-state Mach number contours for inviscid bow shock upstream of a blunt body

in Mach-4 supersonic flow.

91

D
R
A

FT

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

-1.5 -1.45 -1.4 -1.35 -1.3 -1.25 -1.2

D
en

si
ty

x

Lv. 0
Lv. 1
Lv. 2

Figure 47. Steady-state density profile along the symmetry line of y = 0 for inviscid bow shock

upstream of a blunt body in Mach-4 supersonic flow.

92

D
R
A

FT

 0

 2

 4

 6

 8

 10

 12

 14

-1.5 -1.45 -1.4 -1.35 -1.3 -1.25 -1.2

P
re

ss
u
re

x

Lv. 0
Lv. 1
Lv. 2

Figure 48. Steady-state pressure profile along the symmetry line of y = 0 for inviscid bow shock

upstream of a blunt body in Mach-4 supersonic flow.

93

D
R
A

FT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-1.5 -1.45 -1.4 -1.35 -1.3 -1.25 -1.2

M
ac

h
 n

u
m

b
er

x

Lv. 0
Lv. 1
Lv. 2

Figure 49. Steady-state Mach number profile along the symmetry line of y = 0 for inviscid bow

shock upstream of a blunt body in Mach-4 supersonic flow.

94

D
R
A

FT

9.11 Mach-3 Supersonic Flow Over a Wedge

9.11.1 Problem Description

This is a standard problem in compressible, invicid shock theory. The details about this problem

can be found in Chapter 4 of [70]. For this problem, one can use the Rankine-Hugoniot relations

to compute the exact fluid state just behind the oblique shock [70]. Only half of the configuration

is modeled due to the symmetry nature of this problem. The governing equations are the 2D Euler

equations with a constant ratio of specific heats of 1.4. Fig. 50 displays the computational domain

for simulation. The wedge has a half-angle of 15◦, and a free-stream Mach-3 flow (with ρ∞ = 1

and p∞ = 1/1.4) is imposed on the inflow boundary (SideSet 2). The slip condition is imposed

on the symmetry boundary and also on the wall surface of the wedge (SideSet 1). The Riemann

invariant condition is imposed on the outflow boundary (SideSet 3).

Figure 50. Computational domain for inviscid Mach-3 supersonic flow over a wedge (SideSet =

1 is solid wall, SideSet = 2 is inflow boundary, and SideSet = 3 is outflow boundary).

9.11.2 Problem Setup

The numerical methods used for running the simulations in this test case are summarized in the

following table. An unstructured triangular mesh consisting of 11024 elements and 5656 points

was used for simulations in this test case, as shown in Fig. 51. The mesh is isotropic and relatively

coarse for this problem. Three spatial discretization methods, the first-order DG (P0), the second-

order rDG (P0P1) with least-squares (L-S) slope reconstruction and min-max slope limiting, and

95

D
R
A

FT

Item Specifics

Governing equations 2D Euler

Fluid properties Ideal gas

Spatial discretization Discontinuous Galerkin

Solution polynomial Piecewise constant (cell-average)

Reconstruction Least-squares slope reconstruction

Stabilization scheme Min-max / WENO slope limiter

Numerical flux scheme HLLC

Execution Steady

Temporal discretization Explicit Euler

Linear solver None

the second-order rDG (P0P1) with L-S slope reconstruction and WENO slope limiting, were used

in simulations, respectively. The following equation can be used to calculate the entropy on each

element or grid point:

S =
p

p∞
(
ρ∞
ρ
)γ −1

The stead-state density, pressure, Mach number, and entropy contours are plotted in Figs. 52, 53,

54, and 55, respectively. Overall, it can be seen that the shock region simulated by the two rDG

(P0P1) methods is thinner than that by the DG (P0). However, notice that the rDG (P0P1) method

with the min-max slope limiting had difficulty to fully converge the flow field in the post-shock

region, resulting in non-smoothness in its numerical solution. Such non-smoothness cannot be seen

very clearly in density, pressure and Mach number contours, but is pretty remarkable in the entropy

contour in Fig. 55(b). In comparison, the rDG (P0P1) method with WENO slope limiting resulted

in fully converged smooth solution in the post-shock region, as shown in the entropy contour in

Fig. 55(c). Furthermore, the computed density, pressure, Mach number, and entropy values were

plotted for x ∈ [0,1] along the horizontal line of y = 3.5, as shown in Figs. 56, 57, 58, and 59,

respectively. Notice that the second-order methods present sharper shock capturing than their first-

order counterpart. Again, the non-smoothness of the minmax slope limited rDG (P1P2) solution in

the post-shock region can be observed in Fig. 59, where the magnitude of oscillation is significant.

Finally, the density residuals versus time steps for the two rDG (P0P1) methods are presented in

Fig. 60, where the residual obtained by the WENO limited rDG (P0P1) reached the level of 10−12,

but the residual obtained by the minmax limited rDG (P0P1) stalled at the level of 10−4.

9.11.3 Input Files

The input file for this test case can be found at tests/cnsfv/2d obliqueshock expl weno.i
under the BIGHORN repository.

96

D
R
A

FT
Figure 51. An unstructured triangular mesh (nelem = 11024, npoin = 5656) for inviscid Mach-3

supersonic flow over a wedge.

9.11.4 Mesh Files

The Exodus-II format mesh file can be found at tests/cnsfv/2d obliqueshock mesh.e under

the BIGHORN repository.

97

D
R
A

FT
(a)

(b)

(c)

Figure 52. Steady-state density contours for inviscid Mach-3 supersonic flow over a wedge: (a)

DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope limiting, (c) rDG(P0P1)

with L-S slope reconstruction and WENO slope limiting.

98

D
R
A

FT
(a)

(b)

(c)

Figure 53. Steady-state pressure contours for inviscid Mach-3 supersonic flow over a wedge: (a)

DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope limiting, (c) rDG(P0P1)

with L-S slope reconstruction and WENO slope limiting.

99

D
R
A

FT
(a)

(b)

(c)

Figure 54. Steady-state Mach number contours for inviscid Mach-3 supersonic flow over a

wedge: (a) DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope limiting, (c)

rDG(P0P1) with L-S slope reconstruction and WENO slope limiting.

100

D
R
A

FT
(a)

(b)

(c)

Figure 55. Steady-state entropy contours for inviscid Mach-3 supersonic flow over a wedge: (a)

DG(P0), (b) rDG(P0P1) with L-S slope reconstruction and minmax slope limiting, (c) rDG(P0P1)

with L-S slope reconstruction and WENO slope limiting.

101

D
R
A

FT

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

D
en

si
ty

x

P0
P0P1: L-S + minmax
P0P1: L-S + WENO

Figure 56. Plot of computed density versus x-coordinate along the line y = 3.5.

102

D
R
A

FT

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.2 0.4 0.6 0.8 1

P
re

ss
u

re

x

P0
P0P1: L-S + minmax
P0P1: L-S + WENO

Figure 57. Plot of computed pressure versus x-coordinate along the line y = 3.5.

103

D
R
A

FT

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0 0.2 0.4 0.6 0.8 1

M
ac

h
 n

u
m

b
er

x

P0
P0P1: L-S + minmax
P0P1: L-S + WENO

Figure 58. Plot of computed Mach number versus x-coordinate along the line y = 3.5.

104

D
R
A

FT

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.2 0.4 0.6 0.8 1

E
n

tr
o

p
y

x

P0
P0P1: L-S + minmax
P0P1: L-S + WENO

Figure 59. Plot of computed entropy versus x-coordinate along the line y = 3.5.

105

D
R
A

FT

10
-12

10
-11

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

 0 5000 10000 15000 20000 25000

D
en

si
ty

 r
es

id
u

al
 n

o
rm

Time-step

P0P1: L-S + minmax
P0P1: L-S + WENO

Figure 60. Comparison of computed density residual norm versus time-step between rDG (P0P1)

with L-S + minmax and rDG (P0P1) with L-S + WENO.

106

D
R
A

FT

References

[1] PG Buningt. A 3-D chimera grid embedding technique. In 7th Computational Physics Con-
ference, AIAA Paper No. 1985-1523, Cincinnati, Ohio, United States, July 1985. American

Institute of Aeronautics and Astronautics.

[2] JA Benek, TL Donegan, and NE Suhs. Extended Chimera grid embedding scheme with appli-

cation to viscous flows. In 8th Computational Fluid Dynamics Conference, AIAA Paper No.

1987-1126, Honolulu, Hawaii, United States, June 1987. American Institute of Aeronautics

and Astronautics.

[3] Rainald Löhner and Paresh Parikh. Generation of three-dimensional unstructured grids

by the advancing-front method. International Journal for Numerical Methods in Fluids,

8(10):1135–1149, 1988.

[4] Shahyar Pirzadeh. Unstructured viscous grid generation by the advancing-layers method.

AIAA journal, 32(8):1735–1737, 1994.

[5] Dmitri Sharov, Hong Luo, Joseph D Baum, and Rainald Löhner. Unstructured navier–stokes

grid generation at corners and ridges. International Journal for Numerical Methods in Fluids,

43(6-7):717–728, 2003.

[6] Donald Keith Clarke, HA Hassan, and MD Salas. Euler calculations for multielement airfoils

using cartesian grids. AIAA Journal, 24(3):353–358, 1986.

[7] William J. Coirier and Kenneth G. Powell. An Accuracy Assessment of Cartesian-Mesh

Approaches for the Euler Equations. Journal of Computational Physics, 117(1):121 – 131,

1995.

[8] Marsha J Berger and Randall J Leveque. An adaptive Cartesian mesh algorithm for the Euler

equations in arbitrary geometries. In 9th Computational Fluid Dynamics Conference, AIAA

Paper No. 1989-1930, Buffalo, New York, United States, June 1989. American Institute of

Aeronautics and Astronautics.

[9] MJ Aftosmis, JE Melton, and MJ Berger. Adaptation and surface modeling for cartesian

mesh methods. In 12th Computational Fluid Dynamics Conference, AIAA Paper No. 1995-

1725, San Diego, California, United States, June 1995. American Institute of Aeronautics

and Astronautics.

[10] Hong Luo, Joseph D Baum, and Rainald Löhner. A hybrid cartesian grid and gridless method

for compressible flows. Journal of Computational Physics, 214(2):618–632, 2006.

[11] NP Weatherill. Mixed structured-unstructured meshes for aerodynamic flow simulation.

Aeronautical Journal, 84(934):111–123, 1990.

[12] DJ Mavriplis and V Venkatakrishnan. A unified multigrid solver for the Navier-Stokes equa-

tions on mixed element meshes. International Journal of Computational Fluid Dynamics,

8(4):247–263, 1997.

107

D
R
A

FT

[13] Kazuhiro Nakahashi, Dmitri Sharov, Shintaro Kano, and Masatoshi Kodera. Applications

of unstructured hybrid grid method to high-Reynolds number viscous flows. International
Journal for Numerical Methods in Fluids, 31(1):97–111, 1999.

[14] William J Coirier and Philip CE Jorgenson. A mixed volume grid approach for the Euler and

Navier-Stokes equations. In 34th Aerospace Sciences Meeting, AIAA Paper No. 1996-762,

Reno, Nevada, United States, June 1996. American Institute of Aeronautics and Astronautics.

[15] Andreas Haselbacher and Jiri Blazek. Accurate and efficient discretization of Navier-Stokes

equations on mixed grids. AIAA Journal, 38(11):2094–2102, 2000.

[16] Andreas Haselbacher, James J McGuirk, and Gary J Page. Finite volume discretization as-

pects for viscous flows on mixed unstructured grids. AIAA journal, 37(2):177–184, 1999.

[17] L Sbardella and M Imregun. An efficient discretization of viscous fluxes on unstructured

mixed-element grids. Communications in numerical methods in engineering, 16(12):839–

849, 2000.

[18] ZJ Wang. A Quadtree-based adaptive Cartesian/Quad grid flow solver for Navier-Stokes

equations. Computers & Fluids, 27(4):529–549, 1998.

[19] N.T. Frink and S.Z. Pirzadeh. Tetrahedral finite-volume solutions to the Navier-Stokes equa-

tions on complex configurations. International Journal for Numerical Methods in Fluids,

31(1):175–187, 1999.

[20] F Haider, J-P Croisille, and B Courbet. Stability analysis of the cell centered finite-volume

MUSCL method on unstructured grids. Numerische Mathematik, 113(4):555–600, 2009.

[21] Ami Harten, Bjorn Engquist, Stanley Osher, and Sukumar R Chakravarthy. Uniformly high

order accurate essentially non-oscillatory schemes, III. In Upwind and High-Resolution
Schemes, pages 218–290. Springer, 1987.

[22] Xu-Dong Liu, Stanley Osher, and Tony Chan. Weighted essentially non-oscillatory schemes.

Journal of computational physics, 115(1):200–212, 1994.

[23] Changqing Hu and Chi-Wang Shu. Weighted essentially non-oscillatory schemes on triangu-

lar meshes. Journal of Computational Physics, 150(1):97–127, 1999.

[24] Michael Dumbser and Martin Käser. Arbitrary high order non-oscillatory finite volume

schemes on unstructured meshes for linear hyperbolic systems. Journal of Computational
Physics, 221(2):693–723, 2007.

[25] Michael Dumbser, Martin Käser, Vladimir A Titarev, and Eleuterio F Toro. Quadrature-

free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic

systems. Journal of Computational Physics, 226(1):204–243, 2007.

[26] Oliver Friedrich. Weighted essentially non-oscillatory schemes for the interpolation of mean

values on unstructured grids. Journal of computational physics, 144(1):194–212, 1998.

108

D
R
A

FT

[27] WR Wolf and JLF Azevedo. High-order ENO and WENO schemes for unstructured grids.

International Journal for Numerical Methods in Fluids, 55(10):917–943, 2007.

[28] Wanai Li and Yu-Xin Ren. High-order k-exact WENO finite volume schemes for solving gas

dynamic Euler equations on unstructured grids. International Journal for Numerical Methods
in Fluids, 70(6):742–763, 2012.

[29] Timothy J Barth and Dennis C Jespersen. The design and application of upwind schemes on

unstructured meshes. In 27th Aerospace Sciences Meeting, AIAA Paper No. 89-0366, Reno,

Nevada, United States, January 1989. American Institute of Aeronautics and Astronautics.

[30] Timothy J Barth. Recent developments in high order k-exact reconstruction on unstructured

meshes. In 31st Aerospace Sciences Meeting, AIAA Paper No. 1993-668, Reno, Nevada,

United States, January 1993. American Institute of Aeronautics and Astronautics.

[31] Randall J LeVeque. Finite-Volume Methods for Hyperbolic Problems, volume 31. Cambridge

University Press, 2002.

[32] Philip L Roe. Some contributions to the modelling of discontinuous flows. In Large-Scale
Computations in Fluid Mechanics, pages 163–193, 1985.

[33] Bram Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach

to numerical convection. Journal of computational physics, 23(3):276–299, 1977.

[34] Sigal Gottlieb and Chi-Wang Shu. Total variation diminishing runge-kutta schemes. Mathe-
matics of computation of the American Mathematical Society, 67(221):73–85, 1998.

[35] B. Cockburn, G. Karniadakis, and Shu C. W. The Development of Discontinuous Galerkin

Method. In Discontinuous Galerkin Methods, Theory, Computation, and Applications. Edited
by B. Cockburn, G. E. Karniadakis, and C. W. Shu. Lecture Notes in Computational Science
and Engineering, volume 11, pages 5–50. Springer, 2000.

[36] B. Cockburn and C. W. Shu. The Runge-Kutta Discontinuous Galerkin Method for conser-

vation laws V: Multidimensional System. Journal of Computational Physics, 141:199–224,

1998.

[37] Roger Alexander. Design and implementation of DIRK integrators for stiff systems. Applied
Numerical Mathematics, 46(1):1–17, 2003.

[38] Morten Rode Kristensen, John Bagterp Jørgensen, Per Grove Thomsen, and Sten Bay

Jørgensen. An ESDIRK method with sensitivity analysis capabilities. Computers & Chemical
Engineering, 28(12):2695–2707, 2004.

[39] Hester Bijl, Mark H Carpenter, Veer N Vatsa, and Christopher A Kennedy. Implicit time

integration schemes for the unsteady compressible Navier–Stokes equations: laminar flow.

Journal of Computational Physics, 179(1):313–329, 2002.

[40] Christiaan M Klaij, Jaap JW van der Vegt, and Harmen van der Ven. Pseudo-time stepping

methods for space–time discontinuous Galerkin discretizations of the compressible Navier–

Stokes equations. Journal of Computational Physics, 219(2):622–643, 2006.

109

D
R
A

FT

[41] Li Wang and Dimitri J Mavriplis. Implicit solution of the unsteady Euler equations for high-

order accurate discontinuous Galerkin discretizations. Journal of Computational Physics,

225(2):1994–2015, 2007.

[42] F Bassi, L Botti, A Colombo, A Ghidoni, and F Massa. Linearly implicit Rosenbrock-type

Runge–Kutta schemes applied to the Discontinuous Galerkin solution of compressible and

incompressible unsteady flows. Computers & Fluids, 118:305–320, 2015.

[43] Xiaodong Liu, Yidong Xia, Hong Luo, and Lijun Xuan. A Class of Rosenbrock Methods for

a Reconstructed Discontinuous Galerkin Method for the Unsteady Compressible Flows. In

22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper No. 2015-2448, Dallas,

Texas, United States, June 2015. American Institute of Aeronautics and Astronautics.

[44] Richard C Martineau and Ray A Berry. The pressure-corrected ICE finite element method for

compressible flows on unstructured meshes. Journal of Computational Physics, 198(2):659–

685, 2004.

[45] Ray A Berry. Notes on the pcice method: Simplification, generalization, and compressibility

properties. Journal of Computational Physics, 215(1):6–11, 2006.

[46] Philip L Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.

Journal of Computational Physics, 43(2):357–372, 1981.

[47] Meng-Sing Liou and Christopher J Steffen. A new flux splitting scheme. Journal of Compu-
tational Physics, 107(1):23–39, 1993.

[48] Meng-Sing Liou. A sequel to ausm: AUSM+. Journal of Computational Physics,

129(2):364–382, 1996.

[49] Meng-Sing Liou. A sequel to AUSM, Part II: AUSM+-up for all speeds. Journal of Compu-
tational Physics, 214(1):137–170, 2006.

[50] M-S Liou, C-H Chang, Loc Nguyen, and Theo G Theofanous. How to solve compressible

multifluid equations: a simple, robust, and accurate method. AIAA Journal, 46(9):2345–2356,

2008.

[51] P Batten, MA Leschziner, and UC Goldberg. Average-state Jacobians and implicit methods

for compressible viscous and turbulent flows. Journal of computational physics, 137(1):38–

78, 1997.

[52] Hong Luo, Joseph D Baum, and Rainald Lohner. Extension of Harten-Lax-van Leer Scheme

for Flows at All Speeds. AIAA journal, 43(6):1160–1166, 2005.

[53] Jack R Edwards. A low-diffusion flux-splitting scheme for Navier-Stokes calculations. Com-
puters & Fluids, 26(6):635–659, 1997.

[54] Jack R Edwards and Meng-Sing Liou. Low-diffusion flux-splitting methods for flows at all

speeds. AIAA journal, 36(9):1610–1617, 1998.

110

D
R
A

FT

[55] P Batten, N Clarke, C Lambert, and DM Causon. On the choice of wavespeeds for the HLLC

Riemann solver. SIAM Journal on Scientific Computing, 18(6):1553–1570, 1997.

[56] Bernd Einfeldt, Claus-Dieter Munz, Philip L Roe, and Björn Sjögreen. On Godunov-type

methods near low densities. Journal of computational physics, 92(2):273–295, 1991.

[57] Sherrie L Krist, Robert T Biedron, and Christopher L Rumsey. CFL3D User’s Manual

(Version 5.0). Technical Report NASA/TM-1998-208444, NASA Langley Research Cen-

ter, Hampton, Virginia, United States, 1998.

[58] Jan-Reneé Carlson. Inflow/Outflow Boundary Conditions with Application to FUN3D. Tech-

nical Report NASA/TM-2011-217181, NASA Langley Research Center, Hampton, Virginia,

United States, 2011.

[59] Gianmarco Mengaldo, Daniele De Grazia, J Peiro, Antony Farrington, F Witherden, PE Vin-

cent, and SJ Sherwin. A Guide to the Implementation of Boundary Conditions in Compact

High-Order Methods for Compressible Aerodynamics. In 7th AIAA Theoretical Fluid Me-
chanics Conference, AIAA Paper No. 2014-2923, Atlanta, Georgia, United States, June 2014.

American Institute of Aeronautics and Astronautics.

[60] V. Daru and C. Tenaud. High order one-step monotonicity-preserving schemes for unsteady

compressible flow calculations. Journal of Computational Physics, 193(2):563–594, 2004.

[61] QL Zeng, NU Aydemir, FS Lien, and T Xu. Comparison of implicit and explicit ausm-family

schemes for compressible multiphase flows. International Journal for Numerical Methods in
Fluids, 77(1):43–61, 2015.

[62] Jun Zhu, Xinghui Zhong, Chi-Wang Shu, and Jianxian Qiu. Runge-kutta discontinuous

galerkin method with a simple and compact hermite weno limiter. Communications in Com-
putational Physics, 19(04):944–969, 2016.

[63] ZJ Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary,

Herman Deconinck, Ralf Hartmann, Koen Hillewaert, HT Huynh, et al. High-order CFD

methods: current status and perspective. International Journal for Numerical Methods in
Fluids, 72(8):811–845, 2013.

[64] Paul Woodward and Phillip Colella. The numerical simulation of two-dimensional fluid flow

with strong shocks. Journal of computational physics, 54(1):115–173, 1984.

[65] Leonid Ivanovich Sedov. Similarity and Dimensional Methods in Mechanics. CRC Press,

1993.

[66] Viktor Pavlovich Korobeinikov. Problems of Point Blast Theory. Springer Science & Busi-

ness Media, 1991.

[67] Timur Linde and Philip L Roe. Robust Euler codes. In 13th AIAA Computational Fluid
Dynamics Conference, AIAA Paper No. 1997-2098, Snowmass Village, Colorado, United

States, June 1997. American Institute of Aeronautics and Astronautics.

111

D
R
A

FT

[68] Ashley F Emery. An evaluation of several differencing methods for inviscid fluid flow prob-

lems. Journal of Computational Physics, 2(3):306–331, 1968.

[69] Bram Van Leer. Towards the ultimate conservative difference scheme. v. a second-order

sequel to godunov’s method. Journal of Computational Physics, 32(1):101–136, 1979.

[70] John David Anderson. Modern Compressible Flow: With Historical Perspective, volume 12.

McGraw-Hill New York, 1990.

112

D
R
A

FT

v1.28

D
R
A

FT

